

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DEFENSE IN DEPTH ADDED TO MALICIOUS
ACTIVITIES SIMULATION TOOLS (MAST)

by

Adam M. Farber
Robert A. Rawls

September 2015

Thesis Advisor: Gurminder Singh
Co-Advisor: John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 2015
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE
DEFENSE IN DEPTH ADDED TO MALICIOUS ACTIVITIES SIMULATION
TOOLS (MAST)

5. FUNDING NUMBERS

6. AUTHOR(S) Farber, Adam M. and Rawls, Robert A.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

With its ever-increasing reliance upon computers and networks in all facets of operation and administration, the
U.S. military is becoming increasingly vulnerable to computer and network-based threats. Military technicians’ ability
to prevent and mitigate these threats is a skill that must be learned and practiced; for this reason, the Malicious
Activities Simulation Tool (MAST) was created.

The ongoing training required to defend networks and ensure DOD network policies are implemented correctly
is costly and time consuming. A solution was needed to facilitate training system operators and administrators in
potentially inauspicious environments, and to be adaptable to emerging threats. Since the proposed solution is on local
systems with communication traveling over untrusted networks, a defense in depth plan ensures no undue
consequences occur during MAST use.

14. SUBJECT TERMS

MAST, SSL / TLS, digital signature, Malicious Activity Simulation Tool, defense in depth

15. NUMBER OF
PAGES

107
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DEFENSE IN DEPTH ADDED TO MALICIOUS ACTIVITIES SIMULATION
TOOLS (MAST)

Adam M. Farber
Lieutenant, United States Navy

B.S., United States Naval Academy, 2004

Robert A. Rawls
Lieutenant, United States Navy

B.S., University of Virginia, 2009

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 2015

Authors: Adam M. Farber
 Robert A. Rawls

Approved by: Gurminder Singh, Ph.D.

Thesis Advisor

John Gibson
Co-Advisor

Peter Denning, Ph.D.
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

With its ever-increasing reliance upon computers and networks in all facets of

operation and administration, the U.S. military is becoming increasingly vulnerable to

computer and network-based threats. Military technicians’ ability to prevent and mitigate

these threats is a skill that must be learned and practiced; for this reason, the Malicious

Activities Simulation Tool (MAST) was created.

The ongoing training required to defend networks and ensure DOD network

policies are implemented correctly is costly and time consuming. A solution was needed

to facilitate training system operators and administrators in potentially inauspicious

environments, and to be adaptable to emerging threats. Since the proposed solution is on

local systems with communication traveling over untrusted networks, a defense in depth

plan ensures no undue consequences occur during MAST use.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVE ...2
B. METHODOLOGY ..3
C. THESIS OVERVIEW ...3

II. BACKGROUND ..5
A. CONFIDENTIALITY ...5

1. Symmetric Encryption...5
a. Triple Data Encryption Standard (3DES)..............................13
b. Advanced Encryption Standard (AES)...................................14

2. Asymmetric Encryption ..18
B. INTEGRITY ...21

1. Threats to Integrity ..21
2. Protection of Integrity ...22

a. Parity Check ..22
b. Hash Function ..23

C. AVAILABILITY ..25
D. AUTHENTICATION AND NON-REPUDIATION26

1. Message Authentication Code ...26
2. Digital Signatures ...26

E. SUMMARY ..30

III. PROPOSED SOLUTION ..31
A. SECURITY ISSUES OF MAST ...31
B. DIGITAL SIGNATURES ...33

1. Digital Signatures ...33
a. Key Generation ..34
b. Using Signatures ...35
c. Verifying Signatures ...36

2. DOD RMF Vulnerabilities Addressed through Digital
Signatures ...38

C. SECURE SOCKET LAYER / TRANSPORT LAYER SECURITY39
1. SSL/TLS Technical Components..40

a. TLS Handshake...40
b. Putting it All Together ..41
c. Shared Secret Negotiation ..43

2. Creating a SSL Socket ...47
3. Using a SSL Socket ..48
4. DOD RMF Vulnerabilities Addressed through SSL49

D. SUMMARY ..51

 viii

IV. TESTING ..53
A. ENVIRONMENT PREPARATION ..53

1. The Virtual Environment ..53
2. Configuration ...54

a. The Host/Hypervisor ...54
b. The Guests ...55

3. Running the VM Guests ..58
a. Running the SG ...58
b. Running the SE ...58
c. Running an EN ...58

B. EXPLOITATION ..58
1. “The Angle” ..59
2. Reconnaissance and “Preparing the Battle-Space”60
3. Execution and Results ...64

C. PROPOSED SOLUTION TESTING ...65
1. Re-attacking Communication ...66
2. Attacking File Transfer ...67

D. SUMMARY ..68

V. CONCLUSION AND FUTURE WORK ...69
A. CONCLUSION OF FINDINGS ...69
B. FUTURE WORKS ...70

1. Vulnerabilities from DOD RMF ...70
2. MAST Rebuild Using OOP ...70

APPENDIX. PROPOSED SOLUTION ..73
A. DIGITALLY SIGNED FILE TRANSFER ...73
B. SECURE SOCKET LAYER COMMUNICATION78

LIST OF REFERENCES ..87

INITIAL DISTRIBUTION LIST ...89

 ix

LIST OF FIGURES

Figure 1. Vigenère Cipher Example ..9
Figure 2. Rail Transposition ..9
Figure 3. Rail Transposition Encrypted Message ...10
Figure 4. DES Encryption, from [5] ..12
Figure 5. AES Encryption ...15
Figure 6. ECB Encryption ...16
Figure 7. Cipher Block Chaining Mode Encryption ...17
Figure 8. Digital Signature Example ...27
Figure 9. Graphical Representation of a Typical TLS Handshake, from [23]42
Figure 10. Virtual Environment ..53
Figure 11. MAST Sample Network ..59
Figure 12. Correct Network Communication ..61
Figure 13. Compromised Network Communication ...62
Figure 14. Communication between SE and EN ...63
Figure 15. Compromised Packet ...65
Figure 16. SSL Packet Capture ...66
Figure 17. SSL Encapsulated in TCP Session ...67
Figure 18. SG File Upload ..67
Figure 19. SE File Check and Accept ...67
Figure 20. File Fails to Verify with Signature...68

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Caesar Cypher ..6
Table 2. Vigenère Table, from [4] ...8
Table 3. Odd Parity Check ...23
Table 4. SHA Values ...25
Table 5. ASD STIG Findings, from [1] ...32
Table 6. DOD RMF Vulnerabilities Addressed by Digital Signatures, from [1]39
Table 7. DOD RMF Vulnerabilities Addressed by SSL / TLS, from [1]50

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

3DES Triple Data Encryption Standard

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption System

CBC Cipher Block Chaining

DES Data Encryption Standard

DOD Department of Defense

DSA Digital Signature Algorithm

ECB Electronic Cookbook

ECDSA Elliptic Curve Digital Signature Algorithm

EN End Node

MAC Message Authentication Code

MAST Malicious Activity Simulation Tool

OOP Object Orientated Programming

RMF Risk Management Framework

RSA Rivest, Shamir, Adleman

SE Scenario Execution Server

SG Scenario Generation Server

XOR Exclusive Or

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

We would like to thank Dr. Gurminder Singh and Mr. John Gibson for their

mentorship and time during our research. Their direction, guidance, and expertise were

instrumental to the successful completion of this thesis. They motivated us during the

challenging portions of our research and challenged us to learn, dig deeper, and push our

own limits throughout the process.

From Adam: I would like to thank my family for their unwavering faith in me and

the support they have shown throughout this entire endeavor. Without them, I would

have been a ship without a rudder and not been able to finish. Rebecca has helped me

with more than she will ever know and has provided the backbone to the family while I

was locked in the “dungeon” working on this “book,” as the kids call it. Thank you from

the bottom of my heart for all that you do. Also, thank you to my thesis partner Alex for

putting up with me throughout this process and dealing with all my little idiosyncrasies;

we did it!

From Alex: First and foremost, I would like to thank God for His continued

blessing and for giving me the perseverance to complete my degree. Secondly, Adam,

thank you for putting up with me throughout these trials—I chose this thesis for the thesis

partner, not the subject, and I chose well. Thanks for leading the charge on the

writing. And finally, I would like to sincerely thank my wonderfully supportive wife,

Heather, who consistently contributes more to the family than I could ever ask. All of my

success can be attributed to her selfless devotion to me and our growing family. She is

my best friend and my inspiration to excel. I could not have done it without her.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

With its ever-increasing reliance upon computers and networks in all facets of

operation and administration, the Department of Defense (DOD) is becoming

increasingly vulnerable to computer and network-based threats. Network operators and

administrators’ ability to prevent and mitigate these threats is a skill that must be learned

and practiced; for this reason, the Malicious Activities Simulation Tool (MAST) was

created.

The ongoing training required to defend networks and ensure DOD network

policies are implemented correctly is costly and time consuming. A solution is needed to

facilitate training technicians and administrators in potentially inauspicious

environments, and to be adaptable to emerging threats.

Autonomous training and evaluating is needed due to a deficit in evaluation of

personnel and resources in general. The training required to maintain a level of

proficiency commensurate with the capabilities of current and potential adversaries is

more than the Navy and the DOD can afford to allocate in a time of significant fiscal

constraints. The need is recognized for an ability to conduct economical and timely on-

the-job training. Thus, MAST is created to provide the opportunity for services to train on

the very networks they are responsible for operating [1].

Currently, MAST uses a tiered approach to operations. There is a master server,

called the MAST Scenario Generation Server (SG), where training scenarios are created,

signed, and distributed.

The next layer of MAST is the Scenario Execution Server (SE); this is the focal

point for many functions of the overall MAST architecture and contains the majority of

MAST’s complexity and code. The SE communicates directly with the SG as well as the

End Nodes (EN) for a particular scenario. It is the server that executes a given scenario

and, as such, is responsible for all command and control functions of that scenario.

The final layer of MAST is the EN; this is the service running on each

participating client computer on the network being evaluated or for which the

 2

administrators are being trained. The MAST EN is the program that enables the SE to

interact with the end computer and user during the scenario. Additionally, it provides

relevant information back to the SE.

MAST has been in a continual state of development since its inception almost

four years ago. Much work has been done on the MAST prototype to enable it to

participate in real-world exercises as a proof of concept. As MAST matures and moves

towards becoming possibly a program of record, there must be a concerted effort to

document improvements and progress toward final acceptance as a program of record.

MAST was evaluated using the DOD Risk Management Framework (RMF) by

Brian Diana in 2015[1] and was found substantially lacking in several critical areas.

These problems are examined in detail in Chapter III.

A. THESIS OBJECTIVE

MAST currently communicates in the clear, potentially over untrusted networks,

and lacks validation of where, or from whom, any communication originates. This issue

was addressed in Diana’s thesis [1]. This thesis increases MAST’s level of security and

assurance by addressing several of the problems identified by Diana without sacrificing

functionality or ease of use.

The focus of this thesis is the correction of security issues identified in [1], these

issues relate to confidentiality, integrity, availability, non-repudiation and authentication.

As an academic prototype rather than a product developmental program, MAST was

inadequately prepared for the DOD RMF; nevertheless, it was assessed for viability as a

program to be offered to the DOD. This thesis evaluates methods to correct seven of the

security deficiencies identified in [1], mainly focusing on confidentiality, integrity,

availability, non-repudiation, and authentication. Furthermore, it implements the

proposed solutions to the greatest extent possible to bring MAST closer to becoming a

viable option for the DOD to offer on-the-job training for system administrators and

commanders of forces in both the cyber realm and the operational environment.

 3

B. METHODOLOGY

There have been many improvements to security on the Internet in recent years.

Many libraries have been created to facilitate the implementation of secure

communications over insecure channels. One such method is the use of digital signatures

whenever sending information between two end-points that might have to traverse

untrusted network paths. Another method is to utilize a secure application-level

connection, such as the Secure Socket Layer (SSL) protocols, which have progressed to

Transport Layer Security (TLS) protocols. These approaches are not mutually exclusive

and provide their own strengths and weaknesses. This thesis employs both methods in

concert to provide defense in depth.

The core modules of MAST are implemented in Java and thus allow for the use of

the Java Cryptography Architecture (JCA), enabling the use of digital signatures and the

creation of TLS/SSL connections. Once these additions have been implemented, they

must be thoroughly verified and validated, the details of which are discussed in Chapter

IV. Our testing included penetration testing, man in the middle attacks, and

unauthorized/malicious transmissions.

C. THESIS OVERVIEW

The thesis is organized into five chapters. The first two chapters provide a

background of MAST and encrypted communications. Chapter III evaluates the specific

deficiencies of MAST that this thesis aims to correct, the status-quo solutions to such

problems, and the chosen implementations. Chapter IV covers the testing of the

implementations that are discussed in Chapter III. Finally, Chapter V concludes the thesis

with a summary of how well the solutions addressed the deficiencies addressed in

Chapter III, along with possible ways to continue to improve MAST.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A lack of secure communication in MAST is an issue that needs to be addressed

for MAST to continue developing and re-enter the DOD RMF. Chapter III reviews more

in depth of what exactly the secure communication issues are currently in MAST. This

chapter provides technical background for the proposed solution presented in Chapter III.

Commonly held assumptions about encrypted communication are that there are three

main pillars to it: Confidentiality, Integrity, and Availability [2]. Recently there have

been two derived additions to these pillars; those are authenticity and non-repudiation.

This chapter explores how these three major pillars and two derived pillars interact and

ensure that only the intended recipients are the ones to know the content of the

communications.

A. CONFIDENTIALITY

Confidentiality is important to encrypted communication because people want to

ensure that what is being said between them is not intercepted by anyone. The

confidentiality of communication is achieved by encryption. This section discusses the

methods for that encryption, either symmetric encryption or asymmetric encryption, and

the strengths and limitations of each type of encryption.

Encryption plays a major role in the ability for someone to hide the contents of a

message from prying eyes. Throughout the ages encryption has been evolving from the

simplest forms to more complex and elaborate. Encryption revolves around the Kerckhoff

principle: the encryption scheme must depend only on the secrecy of the key and not on

the method of encryption [3]. The two types of encryption are symmetric and

asymmetric.

1. Symmetric Encryption

Symmetric encryption is a very secure method of encryption when done correctly

but it is not without its shortcomings. The basic necessity of symmetric encryption is that

both the sender and receiver have the same key for the decryption. This is both the

 6

strength and weakness of symmetric encryption; only those who have the key should be

able to decrypt the messages but how does the key get to those people that need it?

(1) Mono-Alphabetic Substitution

One of the earliest forms of encryption dates back to the time of Julius Caesar and

is thus named after the famed leader. The Caesar cypher is a substitution encryption

where the original letter is replaced, or substituted, with a different letter so that the

original word is unrecognizable. The substitution is with another letter of the same

alphabet for the Caesar cypher, the alphabet is rotated by a set number of places, N, and

then wrapped around. Table 1 shows how this would work using the English alphabet; on

top is the normal alphabet and underneath is the shifted alphabet using N = 3, that is, a

circular shift of three places.

Table 1. Caesar Cypher

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

The Caesar cypher is a prime example of a mono-alphabetic cypher and how

different variants of the cypher can make it more difficult to decrypt. While there are only

25 different possible shifts that could be used for N in the basic English alphabet, if a

person allowed for any permutation of the alphabet for the original substitution, that is

not being limited to simple circular rotations, then there are a possibility of over

400,000,000,000,000,000,000,000,000, or 26-factorial, different possible combinations

that someone might have to try in order to decode the encrypted message without the

proper key [4].

For a time, this was a very successful method of encoding communications;

however, eventually an easy way to decode the message without the decoding key was

developed. This method used analysis of texts to find the most frequently occurring

letters in a language and use that information to decipher the encrypted message. An

example of this would be to examine the English language and find that the letter E is the

most frequent letter, appearing 12.6 percent of the time [4]. Knowing the frequency of the

 7

letters one can find the most frequently appearing letter in the encoded message and start

replacing with the original letters. This method of breaking the encryption forced

development of a more secure way to encode.

(2) Poly-Alphabetic Substitution

A second form of symmetric encryption is a poly-alphabetic substitution cypher.

As the name implies, this new form of substitution cypher uses more than one alphabet to

encode the message. An Italian architect, Leon Battista Alberti, first used poly-alphabetic

substitution in the middle of the fifteenth century for encryption [4]. However, the first

real implementation of this theory of encryption was not used until a French man by the

name of Blaise de Vigenère devised a method to use it. The final method that was

developed was to use twenty-six different shifts of the alphabet so that a reference table

was produced as seen in Table 2.

 8

Table 2. Vigenère Table, from [4]

 a b c D e f g h i j k l m n o p q r s t u v w x y z
1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
7 H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

10 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
11 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
12 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
13 N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
15 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
17 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
18 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
19 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
26 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The manner in which this encryption method worked was to choose a key word;

for this example the keyword is THESIS and the plaintext message is “what a great work

was written.” The key word is repeatedly written over the plaintext message until their

lengths are the same, then the first letter of the keyword is used to find the line to use for

the shifted cipher for that letter. The plaintext letter is found on that line and the letter

where the two lines intersect is used as the substitution. This example is seen in Figure 1;

by taking the first letter of the plaintext, “w,” and intersecting the column with the row

from the first letter of the keyword, “T,” a “P” is found; this is highlighted in Table 2.

 9

T H E S I S T H E S I S T H E S I S T H E S I S
w h a t a g r e a t w o r k w a s w r i t t e n
P O E L I Y K L E L A G K R A S A O K P X L M F

Figure 1. Vigenère Cipher Example

Figure 1 shows the strength of the poly-alphabetic encryption because the same

letter ‘w’ that appears four different times in the plaintext has a different letter substituted

each time. This protects the plaintext from the language analysis that could easily break

the mono-alphabetic cipher. However, after taking a closer look, if the encrypted text is

long enough then a more complicated analysis can be performed. Too in depth for this

thesis is how exactly the analysis is performed; but the encrypted text can be broken

down into multiple different mono-alphabetic ciphers that can then be frequency

analyzed to break the encryption.

(3) Transposition

Another method of hiding the content of a message is to simply transport some of

the letters into different positions with an order to it so that the intended recipient can

decrypt it. There are numerous different forms of transposition ciphers to include: rail,

route, and columnar or keyed. All of these methods use the movement of the plaintext

message to encode the content. The strength of the transposition cipher is that it provides

security through obscurity. The message is hidden in plain sight and just looks like

garbled text. Anyone trying to decipher the text will think it is either a mono-alphabetic

or poly-alphabetic substitution.

An example of the rail transposition is shown in Figure 2. Using the same text as

before, the new encryption is seen in Figure 3

w

t

r

t

r

a

r

t

h

a

e

w

k

s

i

e

a

G

a

o

w

w

t

n

Figure 2. Rail Transposition

 10

Figure 3. Rail Transposition Encrypted Message

The strength of the transposition cipher is also its greatest weakness. The message

is in plain sight and once an analysis realizes that a substitution is not being used, the

analysis can turn toward transposition. Focusing on transposition, an analysis can be

conducted by simple rearrangement of the letters to find anagrams that sense of the

message. The simplest way to avoid the plain sight vulnerability of the transposition is to

use a combination of a poly-alphabetic substitution in conjunction with a transposition.

This would play to the strength of both forms of encryption and also alleviate most of the

weaknesses of both as well. The frequency analysis used against a substitution is made

more difficult by the letters being rearranged within the message by the transposition

cipher. The combination of the two methods does not mean that the message is perfectly

protected; it just means that the message is harder to break.

(4) Block Cypher

As the name implies, a block cypher takes a fixed size of data, a block, and

encrypts it to the same size block of encrypted text. A block cypher also requires a key

for the encryption and decryption to take place. Typically, the block size for this type of

encryption is either 128 bits or 256 bits (16 or 32 bytes/characters), if the data that needs

to be encrypted does not fit into a standard block size it will be padded to fit.

Data Encryption Standard (DES)

Data Encryption Standard (DES) was the standard of encryption for a long time

because of the method in which it would encrypt the data. There are 16 rounds for the

DES system to work; each round will choose a sub-key from the original 56-bit key. DES

splits the data into two streams, a left stream and a right stream, each 32 bits in length.

The right stream is then expanded to 48-bits to be combined via the exclusive-or (XOR)

operation with the 48 bits that were chosen from the 56-bit key. After the XOR operation

 11

the stream is put through a substitution table look-up that takes 6-bits at a time and turns

it into 4 bits, thus going from 48 bits back to 32 bits. The new 32-bit chunk is then

XOR’ed with the left stream 32 bits to become the new right chunk and the old right

chunk becomes the new left chunk. This constitutes one round for the cipher; upon

completion of all rounds of DES, the 32-bit chunks are then appended together to form

the 64-bit block back together. This is illustrated in Figure 4 [5].

 12

Figure 4. DES Encryption, from [5]

 13

A problem with DES is that it has a small key size. Further, it is a slow process to

create the encrypted data; this is because it will only work on a set of 64 bits or 8 bytes of

data at a time. Another problem facing DES is the complementation property. As seen in

[6], if there is a text, T, such that it was created using DES of a plaintext, P, and a key, K,

then:

 T = DES(P,K)

Then also there is a bit-to-bit complement of T:

 T’ = DES(P’,K’)

If the original P is encrypted using all 255 keys K with a least significant bit being

0 then a T’’ is created. After each T’’ is created, it can be compared with T and T’. If it

matches T or T’ then the K or K’ that were used to generate T and T’, respectively, is

most likely the key. While this does not arithmetically defeat DES, it does reduce the

time taken to discover the key by half, by way of comparing a single T’’ to two key

values K and K’ the work load is reduced.

a. Triple Data Encryption Standard (3DES)

An improvement to DES was to make the process more secure by having the

process run three times with either two keys or three keys. This makes the process more

secure and harder to break; but it also takes an already slow process and makes it three

times slower. Another improvement over DES is the increase of key size for 3DES from

a 64-bit key size to yield a 56-bit key to either 128-bits or 192-bits key size to yield two

or three, respectively, 56-bit key chunks resulting in a 112-bit or 168-bit key. These

improvements have helped strengthen the DES encryption but some of the weaknesses

from DES are carried over to 3DES. These weaknesses include the complementary

property, as well as if a 0-key, a zero for the entire key, is used for the process. A 0-key

would make all of the three keys the same and thus making 3DES the exact same as DES

and thereby making no improvement over DES.

 14

b. Advanced Encryption Standard (AES)

The shortcomings of DES and 3DES were enough for a need to have another

encryption process created and the National Institute of Standards and Technology

(NIST) challenged academia to create something better. There were five finalists and of

those five, Rijndael was selected to become AES [3]. The way that AES works is similar

to DES with XOR, shifting, and substitution-mapping but different enough that it is better

because the bits come out of the substitution mapping and then are shifted before going

into the mix column; this helps alleviate the complement problems of DES. The start of

AES is similar to DES in that there is substitution of bytes in the chunk. After the

substitution takes place the rows of the chunks are shifted and then the subsequent

columns are mixed around and finally the key is applied into the chunks. All of this

together creates one round of AES. Multiple rounds are needed for AES to be complete.

A single round of AES is illustrated in Figure 5. This figure starts at the top with breaking

the data into 16 blocks to be fed into the substitution mapping. When the substitution is

complete those bits are fed into the mix column. The AES mix column is similar to DES

in that the bits are separated and then XOR’ed with other halves of different substitution

mappings. The same substitution mapping bits are used for all four rows of the mix

column and then finally rejoined together before the key is applied and the bits are then

divided back into their original sized chunks.

15

Figure 5. AES Encryption

AES has no known weak keys or semi-weak keys [7]. AES is used throughout the

IEEE 802.11 standard as an acceptable method for various encryption requirements as

well as it is in use for IPSec [8], [9]. AES strengths will be discussed more in Chapter

3 where the use of AES is shown in the implementation of Secure Socket Layer /

Transport Layer Security (SSL/TLS).

(1) Block Ciphering Modes

Since block ciphering takes a fixed block size and data is usually larger than that

block size, a method had to be created to take the block size and use it to encrypt the

larger amount of data. This section will cover two of the modes that have been used for

block ciphers: Electronic Codebook and Cipher Block Chaining; there are more modes

but they are beyond the scope of the thesis and these two are the more common modes

used [3]. Both of these methods can use DES, 3DES, or AES. For the purposes of this

thesis, the discussion will be based on the use of AES.

 16

Electronic Codebook (ECB)

This is the simplest and the weakest mode for block ciphering. For this mode of

block ciphering, the data is broken into even sized blocks and encrypted as individual

blocks. If the data does not evenly divide into blocks then padding is added to generate

the last block for encrypting. Each block is encrypted independent of the other blocks

with no influence on any of the other blocks being encrypted. While this makes the

encryption faster it does not help if there are large portions of the data that are the same

or if data is repeated. This can be seen in Figure 6, an ECB encryption of a picture of the

Linux penguin.

Figure 6. ECB Encryption

As can be seen in Figure 6, the picture can still be discerned. The encryption

happened; however, since there was a lot of similar data and there was no change in how

that data was encrypted the image changes a little but not completely. This is why ECB is

not a very good mode of block ciphering.

 17

Cipher Block Chaining (CBC)

Where ECB had shortcomings and failures, Cipher Block Chaining (CBC)

corrected them and is a good block mode to encrypt data. The concept is similar to ECB

as the data is broken into blocks and padding is added if needed. The major difference

between ECB and CBC is that CBC uses an initialization vector. The initialization vector

is XORed with the first block of plaintext; the result is then is put through the block

encryption. The output serves as the initialization vector for the next block of ciphering.

This is illustrated in Figure 7.

Figure 7. Cipher Block Chaining Mode Encryption

As can be seen in Figure 7, the problem becomes what to use as the initial vector

for the first block of code. A few options are available for the first block of code: fixed,

counter, random, and nonce-generated. The first option, a fixed initialization vector, is

not a good one because similar blocks of data are always encrypted similarly. The second

option of using a counter is almost as bad as the fixed option. The reason that the counter

option is bad is because much real world data could start similarly and the counter could

cancel any differences in the initial XOR causing the blocks to turn out similar enough to

be susceptible to attack. The third option is to use a random initial vector. The random

initialization vector is usually added to the message as the first cipher block so that the

recipient will know the random initialization vector used to encrypt the text. This presents

a problem for security because an attacker could intercept the data and try the first block

as an initialization vector to decrypt the data thereby enabling a man-in-the-middle

18

attack. While combating the problem associated with ECB and a fixed or counter

initialization vector, it tends to add a large amount of data to small data that needs to be

encrypted if the original data to be send was small, such as a short message. The final

option is to use a nonce, or number used once, as the initialization vector. This nonce is

unique in that it is only used once with any key so as to make it more difficult to break by

an advisory. When the message is sent the nonce must be encrypted and passed with the

data, this does not add too much extra data to the message and is easily accomplished [3].

2. Asymmetric Encryption

While symmetric encryption is a great tool to use for secure communication and

data, it does have shortcomings. With symmetric encryption all parties that want to

encrypt and decrypt the same message must have the same keys for the process to work

correctly. This becomes a problem of scale when a large group of people or machines

need the information that is being encrypted. Also a problem of key distribution arises

because the keys must be distributed to the people or machines that require them, and

doing so securely is difficult.

A different method of providing confidentiality is to use asymmetric encryption.

This method uses one key or keys to encrypt information and a different set to decrypt the

information. This helps to solve the problem of all parties needing the same key for

encryption and decryption. The problem of key compromise is addressed with

asymmetric encryption, in that if the receiver’s key is compromised than little damage is

done to the encrypted message. This will be explained further later in the chapter.

Public key encryption is used synonymously with asymmetric encryption. Keys

exist in pairs: a public key and a private key. A public key is a key that is available to

anyone and everyone. The private key is beholden to the person for whom it was created

to do the encryption or decryption. The two most widely known public key encryption

methods are the Diffie-Hellman key exchange and the Rivest, Shamir, and Adleman

(RSA) method.

 19

Diffie-Hellman

Diffie-Hellman (D-H) is an easily explained secret key exchange between people.

The strength of D-H is brought about through modulo math. There are private numbers

that must be kept private and public numbers that must be exchanged between people and

a way for all parties to agree on the secret number. D-H uses extremely large prime

numbers; but for purposes of this explanation smaller numbers will be used and an

assumption of an understanding of modulo math and prime numbers is made.

Suppose two people, Rebecca and Heather, want to exchange secret muffin

recipes and to do this they have to agree on a secret number to use for encrypting the

recipes. To do so they have to tell each other the public numbers to use. They choose a

prime number and a prime root modulo number of the prime number, 23 and 5

respectively. Now each chooses a secret number known only to herself: neither knows the

other’s secret number. Rebecca chooses her secret number to be 8 and then sends Heather

the value, R, which is:

 R = 58 mod 23 = 16

Heather also does the same calculation with her secret number, which she chose

as 13:

 H = 513 mod 23 = 21

Rebecca sent the number 16 to Heather; who in turn sends Rebecca the number

21. With these two numbers, Rebecca and Heather now have the knowledge to access

their shared secret number. Rebecca achieves the secret number by calculating it:

 Secret = 218 mod 23 = 3

Heather does the same calculation with the number sent to her from Rebecca.

 Secret = 1613 mod 23 = 3

Now Rebecca and Heather have a number that is only known by the two of them.

This is asymmetric because anyone can know the prime number and the prime root

modulo number; but without knowing the secret number for Rebecca and Heather there is

a very small chance that the secret number could be discerned by an attacker.

Rivest, Shamir, and Adleman (RSA)

20

While the D-H key exchange is good for getting a secret number or key to

different people, the data or message being sent is not encrypted. For this purpose a form

of encryption must be used and one was created that used asymmetric keys to achieve

encryption without the need for everyone to have the same keys. Rivest, Shamir, and

Adleman devised a method that would let a person encrypt a message, or data, in a way

that it can be sent to the recipient without the need for a key exchange [10]. A recipient

would just publish a public key for anyone to use and then retain a private key for the

decryption. Similar to the D-H key exchange, there are prime numbers and modulo math

used, in conjunction with Euclid’s algorithm, and for the following example an

understanding of each is assumed. Also like the previous example, smaller prime

numbers will be used but the real RSA encryption uses much larger prime numbers ones

that are up to 2048 bits in size.

Rebecca and Heather still want to exchange muffin recipes but this time they want

to encrypt the recipes and send them in one step instead of the two steps required with the

D-H key exchange followed by encrypting.

Rebecca picks two prime numbers, P1 and P2, which for this example shall be

taken to be 7 and 13, respectively. These values are to remain secret and known only to

Rebecca. She multiplies these two numbers together and publishes the product (P), with

another number, E, as her public key. The value of E must be such that it is relatively

prime to the value (P1-1)(P2-1), referred to as the Euler’s totient function [11]. These two

numbers, P and E, are made known to anyone that wants to send Rebecca a message.

Heather, knowing Rebecca’s public key, converts her recipe to a number, for the

purposes of this example that number is 76 or M. In order to produce the encrypted text

Heather runs her number through the equation:

Encrypted Text (C) = ME mod P

This will produce a number, in this example 20, that is then sent to Rebecca.

Rebecca then uses her two private numbers and calculates the decryption key, D. This is

done by using the modulo multiplicative inverse of E and P such that:

E x D = 1 mod (P1-1)*(P2-1)

21

The result for this example is that D is equal to 5. Thus, D replaces E in the

original equation just like C replaces M. The decryption equation looks similar to the

encryption equations but with the substitutions:

Decrypted Text (M) = CD mod P

After all the substitution and math is worked out, Rebecca would arrive at having

the same number for M as Heather had sent [4]. So long as Rebecca does not reveal her

secret numbers, anyone can send an encrypted message to Rebecca and she should be the

only person who can decrypt it. This is the strength of RSA encryption.

B. INTEGRITY

Integrity is a pillar of secure communication because the people sending data to

each other need to be able to rely on the fact that the message is received exactly as it was

sent. The easiest way to think about integrity is to remember the childhood game of

telephone, where children would sit in a line and at one end the first child would whisper

a “secret” sentence into the ear of the child next to him. The sentence would be repeated

from one child to the next until the last child in the line would say what she had heard

from her neighbor and it would be compared to the original sentence; rarely did the two

sentences match. While this is funny in a party environment it takes a turn for the worse

if the original message was, “Do not attack at dawn” and the message received was

“Attack at dusk” or possibly “Do attack at dawn.” In the following paragraphs threats to

integrity and possible protection against these threats will be discussed.

1. Threats to Integrity

Two common forms of threats to integrity exist: manipulation of data and the

corruption of data. This section examines these two different threats to integrity and how

the two could occur in the real world.

Manipulation

The example just provided, the message “Attack at dusk,” is an example of the

message being manipulated while in transit. Manipulation is the willful changing of the

contents of the message so that a different result is achieved when the recipient receives

 22

the message. The manipulation could be subtle or substantial but if the manipulation is

undetected, it is successful.

Corruption

“Do attack at dawn” may be considered an example of simple corruption of the

original message, assuming the individual passing it on had simply failed to hear the

word “not.” This corruption is unintended changing of the message that happens because

of transfer methods of the message or data. Corruption could happen because of a power

surge along the lines of communication, a lightning strike, a simple data corruption on the

storage medium, or wind shifts that affect the swaying of tree branches in a wireless

environment. The method of corruption is not important; detecting the corruption, and

correcting it when possible, is.

2. Protection of Integrity

While there are intended and unintended forms of integrity violations, there are a

few different ways to help protect data from such violations. Two methods reviewed in

this thesis are hash functions and parity code. These methods will not indicate what the

manipulation is or where the corruption occurred; rather they just help with the ability to

detect that there was manipulation or that corruption had happened.

a. Parity Check

A simple error check for integrity is the parity check. This could be either odd

parity or even parity, which means that a bit is appended to the set of all bits in the data

such that the count of set (“true”) bits is either even or odd. An example of this is seen in

Table 3.

 23

Table 3. Odd Parity Check

Original Data Parity Bit Modified Data Detection
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 Yes
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 Yes
0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 No
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 Yes
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 No
0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 No
0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 Yes
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 No

Table 3 shows an odd parity for an eight-bit data stream. The ninth bit is added so

that the sum of the stream is made odd. So long as no even number of bits are corrupted

or changed than the parity check does not fail. Various means exist to produce a more

complex parity check such that the likelihood of detecting changes in the “checked” data

is more probable. Another easy way to check for corruption or manipulation is to use a

hash function.

b. Hash Function

A hash function takes any size of data and converts it to a fixed-size amount of

data, usually between 128–1024 bits. This means if a hash function is of 128 bits in size it

will take any size of data and manipulate it until it is represented by a 128-bit block. In

the extreme, if the data is 1 bit long than it will manipulate the data in a manner that it

will produce 128 bits for the hash value. Similarly, if the data were a Gigabyte of data the

same hash function would manipulate the data in such a way that still only a 128-bit

block of data would be produced.

The strength of this technique is that a hash function could produce a random

mapping of the original data to the hash value produced. A good hash value will have

high collision resistance; that is, it would be highly unlikely that two different blocks of

data would create the same hash value for a given function. This random mapping and

collision resistance make hashing a good way to help protect the integrity of data; that is

a small change, of even one bit, in the original message could cause a large change in the

24

hash value and the change would be detected. The randomness of the mapping ensures

that given just a hash value, the original data could not be recovered or reverse

engineered.

Two different hash functions are the Secure Hash Algorithm (SHA) and the

Message Digest (MD) algorithm. MD5 is the current iteration of the message digest

algorithm for creating hash functions and is currently not recommended for use in secure

communication [4], although this recommendation is not heeded by many as MD5 is still

available for use on websites to verify the integrity of downloads and content. SHA has

many different forms, starting with SHA (SHA-0) and progressing through SHA-1, SHA-

224, SHA-256, and SHA-384 to SHA-512. These numbers for the most part represent the

size of the hash value and thus there is a SHA for sizes 160, 224, 256, 384, and 512 bits.

Whereas MD5 is only 128 bits, SHA was able to adapt and evolve to accommodate larger

hash values and remain relevant to secure communication. This is why the SHA family is

the only hash functions recommended by the National Institute of Science and

Technology (NIST) [12]. The exact methodology of how the hash function creates the

residual value is beyond the scope of this thesis. Table 4 shows the different SHA values

for an empty text document, string = ““ or empty, and the SHA values for a text

document that only contains a single blank character, string = 0x08 (in hexadecimal).

 25

Table 4. SHA Values

Function Value (String = ““) Value (String = “ “)
SHA (SHA-0)

(20 bytes)
f96cea198ad1dd5617ac08

4a3d92c6107708c0ef
92847a9f8c36a92affc65e9b

fb4eb4f851b50dad

SHA-1
(20 bytes)

da39a3ee5e6b4b0d3255bf
ef95601890afd80709

e5fa44f2b31c1fb553b6021e
7360d07d5d91ff5e

SHA-224
(28 bytes)

d14a028c2a3a2bc947610
2bb288234c415a2b01f82

8ea62ac5b3e42f

b265f33f6fe99bd366dae49c
45d2c3d288fdd852024103

e85c07002d

SHA-256
(32 bytes)

e3b0c44298fc1c149afbf4c
8996fb92427ae41e4649b
934ca495991b7852b855

4355a46b19d348dc2f57c04
6f8ef63d4538ebb936000f3

c9ee954a27460dd865

SHA-384
(48 bytes)

38b060a751ac96384cd93
27eb1b1e36a21fdb71114b
e07434c0cc7bf63f6e1da27
4edebfe76f65fbd51ad2f14

898b95b

d654902b550e334bb6898d
5c4ab8ebe1aedc6c85368ea
fe28e0f89b62a74a23e1ed2
0abbc10c02ce321266384d

444717

SHA-512
(64 bytes)

cf83e1357eefb8bdf154285
0d66d8007d620e4050b57
15dc83f4a921d36ce9ce47
d0d13c5d85f2b0ff8318d2
877eec2f63b931bd47417a

81a538327af927da3e

3abb6677af34ac57c0ca582
8fd94f9d886c26ce59a8ce6
0ecf6778079423dccff1d6f1
9cb655805d56098e6d38a1
a710dee59523eed7511e5a

9e4b8ccb3a4686

These two columns illustrate the vast difference in hash values just from a single

character being added to a document and then re-hashed.

C. AVAILABILITY

Availability is the simplest of the pillars to describe. Either something is available

or it is not. This could be a physical restriction in that something was physically removed

or denied to a user, or indirectly, such as someone denying power to a building where the

users were trying to access the computers. While there are many different ways for

something to become unavailable, especially in the digital realm, there are too many to

discuss within the scope of this thesis. For the purposes of this thesis, availability will

refer to whether something is accessible or not. If a resource is accessible than it is

available and if it is not accessible than it is not available.

 26

D. AUTHENTICATION AND NON-REPUDIATION

Given the triangle for digital security consists of confidentiality, integrity, and

authentication, when two or more of these are combined a new pillar is formed. When

confidentiality and integrity are combined new pillars of authentication and non-

repudiation are created. The use of a hash function value appended to the message creates

a message authentication code; when RSA encryption is used in conjunction with a hash

function digital signatures are created.

1. Message Authentication Code

A message authentication code (MAC) uses a keyed cipher block chaining

encryption method to generate a one of a kind authentication code that is attached to the

original message and sent with the original message to the recipient. The recipient then

goes through the same steps with the received message to generate his own MAC and

compares it to the MAC that was sent with the original message. If the MAC generated is

equal to the MAC sent then the message was not changed in route to the recipient and the

recipient knows that only someone with the MAC-key could have generated the MAC

and sent the message.

2. Digital Signatures

Similar to a message authentication code, a digital signature adds a refinement to

the list of people that could have sent a message or data. With a MAC, anyone that has

access to the MAC-key could have generated the message but with a digital signature

there is only one person that could have created the signature and this results in non-

repudiation being added to the authentication of a message or data; that is, the ability to

prevent the originator of a message to later retract or repudiate having sent the message.

The generation of a digital signature is similar to the generation of a MAC. The

message is hashed, using one of the approved hash functions previously mentioned, and

then the hash value is encrypted using the sender’s private key, which was formulated

using the RSA encryption previously discussed. This encrypted hash value is attached to

the message and then the message is encrypted with the recipient’s public key and sent to

 27

the recipient. The recipient uses her private key to decrypt the message, thus preventing

anyone else from decrypting it and modifying the message en route, and the public key of

the sender to decrypt the hash value sent within the signature, thus ensuring only the

originator could have generated the hash. The recipient hashes the original message sent

and compares that hash value to the hash value that was decrypted. If the two match then

the message is authentic and the person whose public key was used to encrypt the

signature could only have sent it, so there is non-repudiation. Figure 8 shows an example

of how this would work.

Figure 8. Digital Signature Example

This provides confidentiality, integrity, authentication and non-repudiation for the

message.

Similar to digital signatures there is also Public-Key Infrastructure (PKI), which is

more of an extension of or implementation of digital signatures on a large scale. PKI

handles the key exchange for the digital signatures as well as has the ability to have a

trusted agent verify that a signature is authentic. The way that the signature is

authenticated is by using a trusted Certificate Authority (CA) to host the public keys of

supported entities. For example, a user, Rebecca, generates a key pair and stores the

28

private key but sends the public key to the CA. The CA then issues a certificate stating

that the public key belongs to Rebecca and this is included when Rebecca sends her

public key to Heather so that Heather has a reassurance that the public key that she

received is actually Rebecca’s. PKI uses X.509 as its standard for identification purposes

and authentication of user submitted keys [13].

X.509

X.509 is the standard for generating a certificate from the CA to be used in the

PKI system [13]. This standard tells about the user that is providing the certificate as well

as how the CA generated the certificate. There are three fields to X.509 entities: the

Certificate, Certificate Signature Algorithm and the Certificate Signature. The Certificate

is comprised of 10 subfields. Those subfields are as follows for a X.509 version 3

certificate.

(1) Version

This describes what version of X.509 the certificate meets. There are three

versions of the certificate, versions 1, 2, and 3; with 3 being the most current [14].

(2) Serial Number

This is a unique positive integer assigned by the CA to each individual certificate

and no two certificates should have the same serial number [14].

(3) Algorithm ID

The algorithm used to sign the certificate is named in this section and this must

match the algorithm named in the Certificate Signature Algorithm [14].

(4) Issuer

The Issuer is the name of the CA or person that is providing the certificate. The

certificate can be self-signed, meaning that the user who created the public key is also the

one who created the certificate and no outside entity verified the public key. This is

covered in Chapter III [14].

29

(5) Validity

The CA puts the expiration date of the certificate in this field. This helps with

revocation of any certificates and ensures that users have the most up-to-date certificates

for security purposes [14].

(6) Subject

The user associated with the public key is named in this section [14].

(7) Subject Public Key Information

The type of key (RSA, DSA, or D-H) as well as the actual public key is located in

this section [14].

(8) Unique Identifiers

This is used in the case that the Subject or issuer names have to be reused over

time [14].

(9) Extensions

This section allows for a certification hierarchy [14]. A certification hierarchy is a

list of trusted Subjects that allow for unknown users to trust a certificate and the public

key. Keeping with the example of Rebecca and Heather, a certification hierarchy could

be that Rebecca tells Heather to trust a public key from Denise even though Heather does

not know Denise. Heather trusts Rebecca and Rebecca trusts Denise; thus, a hierarchy of

trust is created, also referred to as transitive trust.

The Certificate Signature Algorithm field contains the algorithm used to sign the

certificate by the CA [14]. The Certificate Signature is the value of the certificate using

the Certificate Signature Algorithm. The recipient uses this to verify the integrity of a

received certificate.

 30

E. SUMMARY

In this chapter, the core concepts of confidentiality, integrity, and availability,

along with the derived concepts of authentication and non-repudiation were explained.

Ways in which to ensure that these pillars of secure communication are afforded and

enacted were also covered. Chapter III covers how MAST is lacking in these areas and

how the correction of these areas is addressed by incorporating different libraries of code

into the java applications that comprise MAST.

31

III. PROPOSED SOLUTION

As highlighted in [1], MAST is deficient in encryption and secure

communication. This presents a problem for the use of MAST on the DOD computer

systems and networks. This chapter examines some of the network centric issues of

MAST.

A. SECURITY ISSUES OF MAST

For a more in depth discussion of the issues described herein, refer to [1]. This

thesis will address the issues included in Table 5 that is extracted from [1] and included

here for ease of reference; it is from the development findings in [1]. This section of [1]

has 42 of the 77 identified issues in MAST. The table is divided into three columns: the

severity of the issue, the portion of the STIG that is applicable, and a detail of the

requirement and how MAST fails to meet the requirement. Per [1], the severity of a

finding is divided into high, medium, and low. A high severity is any vulnerability the

exploitation of which will directly and immediately results in loss of confidentiality,

availability, or integrity. A medium severity is any vulnerability the exploitation of which

has a potential to result in loss of confidentiality, availability, or integrity. A low severity

is any vulnerability, the existence of which degrades measures to protect against loss of

confidentiality, availability, or integrity.

32

Table 5. ASD STIG Findings, from [1]

STIG ID Severity Requirement from ASD
STIG

Finding Details from SCA

APP3250 High

The designer will ensure
data transmitted through a
commercial or wireless
network is protected using
an appropriate form of
cryptography.

Encryption is not used by
the application.

APP3150 Medium

The designer will ensure the
application uses the Federal
Information Processing
Standard (FIPS) 140–2
validated cryptographic
modules and random
number generator if the
application implements
encryption, key exchange,
digital signature, and hash
functionality.

Encryption is not used by
the application.

APP3170 Medium

The designer will ensure the
application uses encryption
to implement key exchange
and authenticate endpoints
prior to establishing a
communication channel for
key exchange.

Encryption is not used by
the application.

APP3260 Medium

The designer will ensure the
application uses
mechanisms assuring the
integrity of all transmitted
information (including labels
and security parameters).

Application does not use any
kind of integrity mechanism.

APP3300 Medium

The designer will ensure
applications requiring server
authentication are PK-
enabled.

Application does not have
server authentication
mechanism. Lack of
capability is a finding. PKI
waiver required to continue
without PKI enabled.

33

STIG ID Severity Requirement from ASD
STIG

Finding Details from SCA

APP3700 Medium

The designer will ensure
unsigned Category 1A
mobile code is not used in
the application in
accordance with DOD policy.

Application’s SIMware
modules contain various
forms of mobile code, which
are unsigned.

APP3710 Medium

The designer will ensure
signed Category 1A and
Category 2 mobile code
signature is validated before
executing

Application performs no
validation of mobile code.

Seven vulnerabilities, as highlighted in Table 5, are addressed in this chapter with

a combination of proposed solutions to solve the issues mentioned in [1].

B. DIGITAL SIGNATURES

Using digital signatures is the first layer of a proposed defense-in-depth plan for

MAST. As discussed in Chapter II, a digital signature allows for authentication and non-

repudiation of data. The proposed solution for digital signatures in support of MAST’s

defense-in-depth plan leverages java’s security package [15], specifically the portion of

the security package that handles access control, such as key pair generation, private key

generation, public key generation, and random number generator. This would be used for

communication between the MAST SG Server, SE Server, Graphical User Interface, and

the clients or ENs. The code fragments in this section are included to help understand

concepts and do not directly correlate to the actual code used in MAST; they are intended

for explanatory and illustrative purposes only.

1. Digital Signatures

The digital signatures generator in the java security package generates signatures

in accordance with the Digital Signature Algorithm (DSA), RSA digital signature

algorithm, and the Elliptical Curve Digital Signature Algorithm (ECDSA). The proposed

solution uses the java methods to create a public and private key for each of the

34

components of MAST and store the keys in a key store that is accessible by all the

components.

a. Key Generation

Java accomplishes the generation of keys via its security library. The library must

be imported before the functionality can be used:

import java.security.*;

This command will import every method that is contained within the security

library. Once the security library is imported, access is granted to methods that are

required to create the keys for each part of the MAST system. The generation of the keys

is simple in coding terms but a lot of work is done by the library routines.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance (“ECDSA”);

Here keyGen is created as an instance of KeyPairGenerator using the RSA standard

and the key generation algorithms that are proprietary to Sun Microsystem (now Oracle,

Inc.). There is a list of different providers that could be used for the KeyPairGenerator in

[16]. After the instance of the KeyPairGenerator is created, a random number must be used

to seed the key. Getting an instance of the SecureRandom method generates the random

number.

SecureRandom random = SecureRandom.getInstance(“SHA1PRNG,” “SUN”);

The SecureRandom instance random meets the FIPS 140–2 requirements for

randomness [17], specifically called out in Section 4.9.1. The next step is to initialize the

key generator with the random number that was just generated.

keyGen.initialize(1024, random);

Here the KeyPairGenerator instance, keyGen, calls the class method, initialize,

which instantiates the keyGen with the key size and the random number for the keys. The

KeyPair class in the Security library stores the public and private keys generated by the

KeyPairGenerator. The KeyPair instance is created using the generateKeyPair method

from the keyGen created above. The use of “SG” in the naming of the key instances is to

 35

make it explicitly clear that these keys are associated with the Scenario Generation

server. Similar naming conventions will be used for the other MAST entities.

 KeyPair pairSG = keyGen.generateKeyPair();

 PrivateKey privSG = pairSG.getPrivate();

 PublicKey pubSG = pairSG.getPublic()

The next part of digital signatures is to use the keys once they have been created.

The proposed solution generates the keys for all components involved, the Scenario

Generation Server (SG), the Scenario Execution Server (SE), and the client or End Node

(EN). The public keys that are generated for each component are stored on the

corresponding component that will need the public key. This example provides a possible

generation of the SG public and private key; the process can be repeated for the SE and

all ENs that are needed. The component that is providing its signature will only need to

use the private key of the key pair; continuing with this example, the SG associated keys

will be used. The SG will create a signature:

 Signature signSG = Signature.getInstance(“SHA512withECDSA,”);

The Signature class of the Security Library again uses the designated algorithm

and desired provider; the two must match the key type that was generated. Now the SG

has an ECDSA signature algorithm to use when communicating with the SE.

b. Using Signatures

The signature instance must be modified each time data is to be certified by the

signature. For this solution the messages will be sent into a byte-wise loop that takes each

byte array read from the associated file and updates the signature instance accordingly.

Note that the signature instance is initialized prior to the generation of the new signature.

Upon complete processing of the intended message, the signature instance is finalized

with the call to the signature method, sign().

signSG.initSign(privSG);

FileInputStream SGfis = new FileInputStream(fileName);

BufferedInputStream SGbufin = new BufferedInputStream(SGfis);

 36

byte[] SGbuffer = new byte[1024];

 int len;

 while ((len = SGbufin.read(SGbuffer)) >= 0) {

 signSG.update(buffer, 0, len);

 };

 SGbufin.close();

 byte[] realSig = signSG.sign();

The subject of the signature is fileName, which is the file that is going to be sent

from the SG to the SE. This file is a new scenario file that is to be sent from the SG to the

SE and for execution by SE. Now that the signature has been created, it will be attached

to the associated data object that is to be sent between SG and SE. With the signature, SE

will be able to verify that the integrity of the new scenario was not compromised during

the communication with SE.

c. Verifying Signatures

The process for generating a signature must be completed by the recipient, using

the data sent by the source (in this case the SG), to enable the recipient to validate the

received data integrity. The same process will work for any component of MAST, so the

communication between SG and SE is verified in the same manner as the communication

between SE and EN.

The receiver must have the public key of the sender in order to verify the

signature. The acquisition of that key is discussed separately in the secure socket layer /

transport layer section of this chapter. The first step in verifying the data integrity is to

load the bytes of the data that was signed. Here it is assumed the recipient stored the

received data (a serialized Java object) in a file, thus the file access methods of Java can

be leveraged.

 FileInputStream SEsigfis = new FileInputStream(fileName);

 byte[] sigToVerify = new byte[SGsigfis.available()];

 SEsigfis.read(sigToVerify);

 37

 SEsigfis.close();

Next the recipient must create a signature instance to be used to verify the

integrity of the data received and associated with a digital signature. The instance must be

initialized before use.

Signature SEsig = Signature.getInstance(“ECDSA”);

 SEsig.initVerify(SGpubKey);

 Now the receiver has to take the message that was sent and generate its own

version of the signature using the public key from the sender. This is accomplished in the

same way that the sender created the initial signature using the sender’s private key.

FileInputStream SEdatafis = new FileInputStream(fileName);

 BufferedInputStream bufin = new BufferedInputStream(SEdatafis);

 byte[] buffer = new byte[1024];

 int len;

 while (bufin.available() != 0) {

 len = bufin.read(buffer);

 SEsig.update(buffer, 0, len);

 };

bufin.close();

Finally, the last step is to compare the two signatures using the class method,

verify(), which returns a Boolean variable indicating whether or not the data that was

received is valid. If False is returned the recipient must discard the received data. Further

action might include requesting a retransmission by the sender as well as alerting the user

that there is a possible compromise of the network. The latter might be conditioned upon

the receipt of multiple invalid signatures.

boolean verifies = SEsig.verify(sigToVerify);

 38

2. DOD RMF Vulnerabilities Addressed through Digital Signatures

The use of digital signatures helps to ensure that there is integrity throughout the

system and that the message that is being sent has not been tampered with while en route

between the two entities that are communicating. Since the digital signatures are only

between the communicating portions of MAST and do not directly verify outside sources

of code or communication and it does not use encryption, there is very little of the DOD

RMF that is corrected by the addition of digital signatures alone. The two parts corrected

are shown in Table 6.

39

Table 6. DOD RMF Vulnerabilities Addressed by Digital Signatures,
from [1]

APP3700 Medium

The designer will ensure
unsigned Category 1A
mobile code is not used in
the application in
accordance with DOD policy.

Application’s SIMware
modules contain various
forms of mobile code, which
are unsigned.

APP3710 Medium

The designer will ensure
signed Category 1A and
Category 2 mobile code
signature is validated before
executing

Application performs no
validation of mobile code.

As Table 6 shows, the vulnerabilities of MAST with regard to validation are of

medium severity. MAST should now be able to validate communication between

components. Now that SG can upload and send a scenario to SE, the use of a digital

signature becomes a critical requirement more so than before when this capability did not

exist. The signing of the scenario by SG before sending and the verification of the

scenario before using allows for MAST to address these two vulnerabilities as mentioned

in [1]. The remaining problems addressed by the DOD RMF are handled by the addition

of SSL to the system.

C. SECURE SOCKET LAYER / TRANSPORT LAYER SECURITY

TLS is used to secure many different types of information transfers. Examples

include web browsing, financial transactions, healthcare transactions, Virtual Private

Networks (VPNs), and custom protocols. It is a layered and application independent

protocol, typically operating between layer 4 and 5 of the TCP/IP Stack. Its primary goal

is to provide two communicating applications with privacy and data integrity [18], but it

can be used in other ways, such as in VPNs, transactional systems and transfer protocols

as mentioned above, where TLS is optionally offered at lower levels of the TCP/IP Stack.

The SSL protocol was originally designed by the Netscape Corporation and used

in a client-server relationship. SSL 1 was never officially released. SSL 2.0, however,

40

was officially released in February of 1995. Shortly thereafter, in 1996, SSL 3.0 was

released due to known security flaws in SSL 2.0 and was subject to a complete redesign

of the protocol. Though Netscape released SSL 3.0, it was historically documented in

[19] because TLS 1.0 uses SSL 3.0 as a foundation.

TLS 1.0, as defined by [20], builds upon the SSL 3.0 design, and can optionally

negotiate to downgrade to SSL 3.0 for legacy interoperability. TLS 1.1, as defined in

[21], was formalized in April 2006. It was released primarily in response to weaknesses

in the initialization vector selection and padding error processing found in SSL 3.0 and

TLS 1.0 [21]. While TLS 1.1 and 1.2 were minor changes to protocol policies, TLS 1.2

added enhanced cryptographic modifications and many other improvements as specified

in [18]. Of note is the transition from MD5/SHA-1 to SHA-256 in several components of

the suite and the depreciation of cipher suites such as IDEA and DES.

1. SSL/TLS Technical Components

TLS is not a simple stand-alone protocol. It is instead an aggregate of multiple

sub-protocols and technologies described in greater detail below. Since the goal of TLS is

to provide confidentiality, integrity, and availability and since other tried and true

technologies already exist to provide some proper subset of these characteristics, TLS

implements an appropriate methodology of combining them. It leverages their strengths

and account for their weaknesses with other sub-protocols and methodologies. The end

product provides the desired security for communication.

a. TLS Handshake

The Handshake is used to negotiate security parameters for the session. Since

there are many different options for a particular TLS session, both hosts need to agree

upon which cipher suite—key establishment, digital signature, confidentiality and

integrity algorithms, etc.—will be used [22]. This portion of TLS has attracted the most

attention, as it has been the primary vector of attack, typically involving downgrading to

legacy cipher suites. The TLS Handshake is a combination of three components:

handshake, change cipher spec, and alert.

41

(1) The Handshake (Hello)

The TLS Handshake, specifically the “Hello” portion, is designed to negotiate

session parameters (cipher suite). The client informs the server of the protocols and

standards that it supports and then the server selects the highest common protocols and

standards. Specifically, the Client Hello message specifies a supported cipher suite that is

defined by a key exchange algorithm, a bulk encryption algorithm, a MAC algorithm, and

a Pseudo Random Function (PRF) [18], MACs and PRFs are discussed later in this

report. Once the server has selected a cipher suite, it informs the client through the

Change Cipher Spec.

(2) Change Cipher Spec

The server notifies the client of the security parameters for the remainder of the

session using the Change Cypher Spec protocol, as decided upon during the initial

handshake. Once the client is in receipt of the server’s Change Cipher Spec message, it

sends its own Change Cipher Spec message to acknowledge and confirm that it will

continue with the selected parameters. The Finish messages are encrypted using the

agreed upon security parameters and serve as an integrity check to the handshake.

(3) Alerts

Alerts are messages that convey errors and warnings such as unexpected message,

record overflow, or bad certificate. Those that are considered “fatal” cause the immediate

tear down of the session to prevent a compromise in security.

b. Putting it All Together

The handshake is one of the most important, and as previously noted vulnerable,

components of the overall TLS protocol. During the handshake, the two hosts (typically a

server and a client) negotiate algorithms, cipher suites, symmetric keys, and other session

parameters.

Though the precise steps the handshake protocol executes will depend on the

server and client configurations and compatibility, it can be generally viewed to follow

42

this procedure; a graphical representation of the TLS Handshake is depicted in Figure 9

[23].

Figure 9. Graphical Representation of a Typical TLS Handshake, from [23]

The corresponding numbered list helps expand on what exactly is being explained

in Figure 9 the numbers on the Client and Server sides of the figure relate to the numbers

on the list.

1

2

3

4

5

43

1. “Client Hello: The client sends a ClientHello message to which the server
must respond with a ServerHello message, or else a fatal error will occur
and the connection will fail. The ClientHello and ServerHello are used to
establish security enhancement capabilities between client and server. This
message exchange establishes the following attributes: Protocol Version,
Session ID, Cipher Suite, and Compression Method. Additionally, two
random values are generated and exchanged: ClientHello.random and
ServerHello.random.”[18]

2. Server HelloDone: “Following the hello messages, the server will send its
certificate in a Certificate message and the Server Key Exchange message
... If the server is authenticated, it may request a certificate from the client,
if that is appropriate to the cipher suite selected. Next, the server will send
the ServerHelloDone message, indicating that the hello-message phase of
the handshake is complete. The server will then wait for a client
response.” [18]

3. Optional Client Certificate: “If the server has sent a CertificateRequest
message, the client MUST send the Certificate message. The
ClientKeyExchange message is now sent, and the content of that message
will depend on the public key algorithm selected between the ClientHello
and the ServerHello. If the client has sent a certificate with signing ability,
a digitally-signed CertificateVerify message is sent to explicitly verify
possession of the private key in the certificate.” [18]

4. Client Change Cipher Spec + Finish: “At this point, a ChangeCipherSpec
message is sent by the client, and the client copies the pending Cipher
Spec into the current Cipher Spec. The client then immediately sends the
finished message under the new algorithms, keys, and secrets.” [18]

5. Server Change Cipher Spec + Finish: “In response, the server will send its
own ChangeCipherSpec message, transfer the pending to the current
Cipher Spec, and send its Finished message under the new Cipher Spec.”
[18]

c. Shared Secret Negotiation

Though technologies and techniques have changed drastically over time, it has

typically not been difficult to achieve confidentiality as discussed below, especially with

the aid of modern computers. The greatest challenge has been to devise a method by

which one can transfer the encrypted material in such a way that it is easy for the

intended recipient to read but difficult or impossible for an adversary to do so. For

example, if using AES, one can encrypt a message such that it is computationally

infeasible to decrypt the message without the key. Then again since AES is a symmetric

44

encryption algorithm, the sender must somehow convey the key to the intended recipient,

and do so securely. However, herein lays the problem: if the sender already had a secure

channel to transmit the key, then he would not be seeking another channel. The solution

to this problem is PKI.

PKI uses the concept of asymmetric cryptography wherein a message is encrypted

with one key and decrypted with another. While the details of generic PKI were

discussed in Chapter II, the assumption going forward is that PKI provides a mechanism

by which a sender can convey a secret to another party where both sender and receiver

are guaranteed one another’s identities and eavesdropping by a malicious party is

impossible. However, this method of communication is extremely computationally

expensive and becomes infeasible for substantial communication, particularly on

embedded or mobile devices.

The specific PKI protocols utilized by TLS are RSA, DH, and Elliptic Curve DH

(ECDH). Specifically, the key exchange algorithm may be selected from the following

list for TLS 1.2: RSA, RSA_PSK, DHE_RSA, ECDHE_RSA, DHE_DSS, DH_DSS,

DH_RSA, ECDH_ECDSA, ECDH_RSA, ECDHE_ECDSA [18].

(1) Confidentiality

Using a symmetric encryption algorithm provides confidentiality. As mentioned

above, symmetric encryption alone presents many challenges. However, after Secured

Secret Negotiation to authenticate and open a secure channel between hosts, a symmetric

key can safely be shared. After exchanging a symmetric key (client and server encryption

keys derived from the “master secret”), the session can benefit from the performance

benefit of symmetric encryption.

TLS 1.2 defined in [18] selects a “Bulk Cipher Algorithm” from RC4, 3DES, or

AES. However, [24] prohibits the use of RC4 in all TLS versions, [25] adds the ARIA

cipher suites, and [26] adds the Camellia cipher suites.

45

(2) Integrity

While Secure Secret Negotiation and confidentiality are critical, and defend

against a wide array of malicious threats, they are insufficient to guarantee CIA without

data integrity. To provide integrity, TLS uses two MAC keys, one for when the server is

sending (server write key) and one for when the client is sending (client write key). The

MAC keys are derived from the shared master secret. Both server and client are in

possession of these keys. When a sender is transmitting a message, it first calculates the

MAC of the message with the appropriate key and then encrypts both the message and

the MAC. The resultant cipher-text is transmitted to the receiver.

The receiver decrypts the cipher-text using the appropriate symmetric key. The

receiver then uses the appropriate MAC key to generate a MAC of the message – if it

matches the attached MAC, then the message has not been tampered with or corrupted in

transit.

The MAC function is either the one specified by the chosen cipher suite and

applied as described above, or it is implicitly provided by Authenticated Encryption with

Associated Data (AEAD) cipher mode in which case the client and server write keys are

unnecessary. The most common implementations of TLS use a MAC from the chosen

cipher suite and not utilize the AEAD functionality; therefore it will not be expanded

upon here. The available MAC algorithms for TLS 1.2 are: hmac_md5, hmac_sha1,

hmac_sha256, hmac_sha384, and hmac_sha512 [18].

(3) Authentication

Though already discussed above, authentication is a critical component of the

TLS protocol. Without some method of effective authentication, the protocol would be

subject to man-in-the-middle and other related attacks. The Shared Secret Negotiation

already provided a mechanism for authentication. Due to the nature of PKI, the client was

able to deem the server authentic when its messages arrived and were decipherable. That

is because the message was sent after being encrypted with the server’s private key.

When the client decrypted the message with the server’s public key, he knew that the

 46

server was the only possible sender of the message. The same process works in reverse

should the server require that the client authenticate using its own certificates.

(4) Anti-Replay

A sequence number provides for anti-replay. The sequence number is bundled

with the message, prior to the application of the MAC. It is a monotonically increasing

number that, if seen out of order or duplicated, can detect the presence of replay attacks.

(5) Key Management

Key management covers several topics, most outside the scope of this paper. The

aspect of key management most relevant to this thesis is that of the PKI infrastructure.

While the usage of PKI has been discussed, the distribution of keys has not. The most

prevalent and robust method by which PKI is employed for TLS is through certificate

authorities (CAs). When a user goes to a website, for example, which utilized TLS, such

as a bank, he or she needs assurance that the certificate being presented in fact belongs to

that institution and not that of an undesired third party.

It would be unreasonable to expect each institution to manually distribute its

public keys to all of its customers. Similar challenges exist in most other applications of

TLS. The current paradigm is to maintain several “root” CAs, such as Verisign or

Digicert, who conduct varying levels of background investigations to validate the identify

of an organization or individual. Once they do so, they certify the organization’s

credentials by issuing them a certificate signed by the root CA’s certificate. Since there is

a short list of root CAs, the major browser and application makers include the root CA’s

public keys within the application. When a user is presented with a website’s certificate,

it needs only check that the signature on its certificate validates against the root CA’s

public certificate. Thus, the user is assured that the certificate being presented is

authentic. In most applications, this process is automated until a violation of the protocol

is encountered. This automation of authenticity is the portion of TLS that provides the

Availability of CIA and is largely responsible for the sweeping success and ubiquity of

TLS.

 47

2. Creating a SSL Socket

As with digital signatures, java provides code libraries to support secure sockets.

These libraries are imported by applications through the following code:

import javax.net.ssl.SSLServerSocket;

import javax.net.ssl.SSLServerSocketFactory;

import javax.net.ssl.SSLSocket;

These imports allow for the creation of a SSL Server Socket Factory, SSL Server

Socket, and a SSL Socket. The SSL Server Socket Factory is used to initialize the keys

and certificates for the SSL Server Sockets that are created. The SSL Server Socket

Factory, when initialized, has the full array of possible algorithms available for securing

the connection. The initialization is achieved through the command:

SSLServerSocketFactory sslServerSocketFactory = (SSLServerSocketFactory)

SSLServerSocketFactory.getDefault();

The .getDefault() method for the SSLServerSocketFactory has to access a key

store that includes the private keys and the trusted members to associate with any SSL

Server Sockets that are initialized. The private keys are for the SSL Server Sockets and

the list of trusted members are the public certificates of CAs. The inclusion of the CAs

allows for the peer authentication trust decisions. Since MAST should only allow for

communication between its components, the default key store is over written and only the

private keys and trusted members of MAST are loaded. MAST does this with a system

call to replace the default key store.

 System.setProperty(“javax.net.ssl.keyStore,” “MAST_Keystore”);

System.setProperty(“javax.net.ssl.keyStorePassword,” “abc123”);

Using sslServerSocketFactory a new SSL Server Socket is created and initialized

by passing the port on which the SSL Server Socket is to listen and the maximum number

of clients that the SSL Server Socket should accept.

sslServerSocket = (SSLServerSocket)

 sslServerSocketFactory.createServerSocket(listen_port, max_clients);

48

As [27] and [28] explain, there are vulnerabilities in some of the algorithms

inherent to SSL. MAST hardens the SSL Server Socket before it is used.

hardenSSLServerSocket(sslServerSocket);

Hardening of the SSL Server Socket via hardenSSLServerSocket allows for

MAST to remove the vulnerable algorithms from the SSL Server Socket and ensure that

whenever a connection is made to the SSL Server Socket that no vulnerable algorithms

are used. The call hardens the specified SSL Server Socket by disabling weak protocols

and cipher suites. This is done by requesting supported suites and protocols and then

disabling those that are prohibited as specified in the static variables for the class. The

now hardened SSL Server Socket is set to accept incoming connections on the listening

port provided during creation.

A client SSL Socket is created similarly to a SSL Server Socket. The calls to

import the necessary libraries are:

import javax.net.ssl.SSLSocket;

import javax.net.ssl.SSLSocketFactory;

The SSLSocketFactory is initialized using a similar method call as that used for

the SSLServerSocketFactory and then an SSLSocket can be created from the

SSLSocketFactory. After creation, the SSLSocket is bound to a port by the operating

system; the exact port to which the socket is bound is not important since the client is not

listening for incoming traffic.

3. Using a SSL Socket

The method of using a SSL Socket is the same as a normal non-secure socket.

First, a server socket on the server and a socket on the client are created, as described

above. Since the server socket is bound to a port the client socket must use that port

number to contact the server. For the initial connection the server and client will go

through the hello and handshake to establish a secure connection, as described above.

49

4. DOD RMF Vulnerabilities Addressed through SSL

The creation of a SSL connection encrypts the communication between the

components of MAST. The SSL session ensures that the two entities communicating are

in fact the entities that are supposed to be communicating. With the addition of

encryption and authentication between server and client, five of the seven CIA-associated

vulnerabilities identified by [1] as pertaining to MAST are addressed. As Table 7 shows

these vulnerabilities are addressed via the use of the SSL connection. The connection

creates an encrypted pipeline between components. The only way the pipeline is created

is through the use of PKI that in turn ensures proper authentication of the end points of

the pipeline.

50

Table 7. DOD RMF Vulnerabilities Addressed by SSL / TLS, from [1]

APP3250 High

The designer will ensure
data transmitted through a
commercial or wireless
network is protected using
an appropriate form of
cryptography.

Encryption is not used by
the application.

APP3150 Medium

The designer will ensure the
application uses the Federal
Information Processing
Standard (FIPS) 140–2
validated cryptographic
modules and random
number generator if the
application implements
encryption, key exchange,
digital signature, and hash
functionality.

Encryption is not used by
the application.

APP3170 Medium

The designer will ensure the
application uses encryption
to implement key exchange
and authenticate endpoints
prior to establishing a
communication channel for
key exchange.

Encryption is not used by
the application.

APP3260 Medium

The designer will ensure the
application uses
mechanisms assuring the
integrity of all transmitted
information (including labels
and security parameters).

Application does not use any
kind of integrity mechanism.

APP3300 Medium

The designer will ensure
applications requiring server
authentication are PK-
enabled.

Application does not have
server authentication
mechanism. Lack of
capability is a finding. A PKI
waiver would be required to
continue without being PKI
enabled.

51

D. SUMMARY

Chapter III addressed seven vulnerabilities of the total 77 identified by [1]. The

addressed vulnerabilities all focused on confidentiality, integrity, authentication, and non-

repudiation. The proposed solutions also address these issues. The use of a SSL

connection ensures that a secure pipeline is established between components of MAST

and only intended participants are able to communicate. The addition of digital signatures

ensures that whatever is received through the pipeline is exactly what is supposed to be in

the pipeline. Further work is needed to address the remaining 70 open findings from [1].

Thirty-five identified issues still remain within the development portion of the findings in

[1]. Twenty-five out of the 70 outstanding issues are with regard to the deployment of

MAST, 12 of the 70 pertain to program management, and 10 of the 70 are dealing with

testing; these remaining issues do not rely on communication between any components of

MAST and have to do with project management requirements. A major hindrance to the

proposed solution is the current implementation of MAST. While a functional work

around is used, a better solution would be achieved with a restructuring of the current

MAST implementation. Chapter IV addresses the testing of the proposed solutions.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

IV. TESTING

A. ENVIRONMENT PREPARATION

Below is a description of the environment in which MAST was evaluated and

exploited to demonstrate inherent vulnerabilities in the current MAST implementation.

First, a listing of relevant software is provided, followed by the configuration necessary

to run the virtual environment and conduct the exploit.

1. The Virtual Environment

The hypervisor used was VirtualBox version 4.3.26_Ubuntu r98988. Though

other hypervisors were available, VirtualBox offered the simplest installation and

configuration, along with a straightforward virtual network configuration.

Figure 10. Virtual Environment

The virtual host/hypervisor ran Ubuntu Linux 15.04 as seen in Figure 10. Ubuntu

Linux was chosen due to the author’s familiarity with the operating system and its ease of

 54

setup for this kind of testing. Ubuntu 15.04, specifically, was chosen to leverage the latest

VirtualBox and Linux Kernel versions to support the hypervisor role.

The virtual guests ran Ubuntu 14.04.2 as shown in Figure 10. Ubuntu 14.04.2 was

selected as it is the latest ‘stable’ release of Ubuntu Linux. Although the preponderance

of DOD end-systems are Microsoft Windows hosts, the relevant MAST components are

not only written in Java but are also completely operating system independent. Thus, an

exploit in this environment should be similarly effective when used with any operating

system. It is beyond the scope of this thesis to verify this similarity; however, replication

of the test execution using Microsoft operating systems as the guest hosts would allow for

validating that expectation.

2. Configuration

The following sections describe the necessary configuration of the different pieces

of software used in this project. The descriptions are written assuming a working

knowledge of basic Linux administration and an understanding of how virtual machines

work. In all of the following descriptions, a sudo apt-get install on a Debian or Ubuntu

system, combined with the listed package, should be sufficient to install the required

software and their dependencies. All other configuration instructions should also work on

a Debian-based system given the right packages are installed.

a. The Host/Hypervisor

The hypervisor ran Ubuntu Desktop 15.04 with Linux Kernel version 3.19.0-21-

generic (SMP) x86_64. The packages required for the hypervisor were:

ettercap-graphical virtualbox virtualbox-guest-additions-iso wireshark

Configuring Wireshark properly was nontrivial. The following commands applied

the appropriate permissions to allow a non-root user to run Wireshark without needing

root privileges (note that log-out is necessary for the group permission changes to take

effect):

 55

$ sudo addgroup wireshark
$ sudo adduser $USER wireshark
$ sudo chgrp wireshark /usr/bin/dumpcap
$ sudo chmod 755 /usr/bin/dumpcap
$ sudo setcap cap_net_raw,cap_net_admin=eip /usr/bin/dumpcap

In order to view the traffic necessary for performing this project, a shared virtual

network was created. The best mode for this network was “Host-Only Network,”

configurable under File → Preferences → Network → Host-Only Networks. This

arrangement allowed the host machine to both run the virtual machines and share their

network, simplifying the execution of the project. The end state connected the

host/hypervisor and all VM guests to a virtual switch.

Once the host-only network (referred to hereafter as vboxnet0) was configured, the

VM guests were created. This was best accomplished by creating one guest virtual

machine and then cloning it as described in the next section. Most defaults for creating a

virtual machine were sufficient. Specifically, the first guest was created with one CPU,

192MB of RAM, and 8GB of storage space. As alluded to above, the network interface

was configured to use vboxnet0. Though it was not strictly necessary, configuring the

MAC addresses with easily identifiable values like 00:00:00:00:00:01 simplified traffic

analysis.

b. The Guests

The virtual guests ran Ubuntu Server 14.04.2 with Linux Kernel version 3.13.0-

55-generic x86_64. During installation, the “Minimal VM Guest” option was selected to

optimize the guests as virtual machines. The packages required for the guests were:
openjdk-7-jre-headless build-essential

While the above were all of the required packages, the following packages were

also installed for convenience:
tcpdump bash-completion vim acpid openssh-server

Furthermore, the VirtualBox guest-additions packages were installed on both host

and guests to facilitate the exchange of files between the host and guest(s), but this step

was not strictly necessary.
Mount the guest iso through host GUI, create a shared folder through the
GUI, naming it “share” and then issue the following commands:

$ sudo mount /dev/cdrom /media/cdrom

56

$ cd /media/cdrom/
$ sudo ./VboxLinuxAdditions.run
$ sudo mount -t vboxsf -o uid=$UID,gid=$(id -g) share /mnt
$ sudo usermod -a -G vboxsf $USER
$ ln -s /media/sf_share ~/share

Once the first host was configured, it was cloned rather than having to create and

configure each new VM individually. Once cloned, the following final steps were taken:

• Changed the hostname appropriately in both /etc/hosts/ and /etc/hostname
• Reset eth numbering by editing the file /etc/udev/rules.d/70-persistent-net.rules

and deleting the line with the old mac address and then changing eth1 to
eth0.

While the above shared folder steps were not required, the following sections

assume that it was done with respect to directory names. The alternative was to manually

copy the required files (listed below) to a directory called /home/$USER/share/[SG|SE|EN],

with the appropriate module specified at the end.

This testing was completed using MAST’s SVN repository version 347. The files

for each MAST component were as follows: SG_347.jar, SE_347.jar, Scenario.txt (with

the file listed in the paragraphs below), startServer.bat, EN_347.jar, module_list.txt (with

the file listed in the paragraphs below), and startClient.bat

The scenario file that the SE had to have in order to complete this testing was

named drivebydownload.txt and had the following contents (copied from ScanSingleHost.txt):
[Scenario]
 Name=Scan Single Host
 MinClients=1

[ModuleList]
 1=NMAP

[GroupList]
 1=1
 2=100%
 3=0

[CommandList]
 1=NMAP --unprivileged 127.0.0.1

[Events]
 1=T 4000 SGC 1 1

The reason for the discrepancy between the file name and file contents was that

MAST was “hard-coded” to execute the drivebydownload.txt for testing because the

functionality did not exist to run a scenario from the CLI.

57

The EN had the following contents in the file module_list.txt:
[module 1]
name = PING
exec = ping
[module 2]
name = NETSTAT
exec = netstat
[module 3]
name = HPING
exec = /usr/bin/sudo /usr/bin/hping3
[module 4]
name = returncode
exec = modules/testExit.sh
[module 5]
name = pwd
exec = pwd
[module 6]
name = eicar
exec = res/modules/eicar.bat
[module 7]
name = PORTSCAN
exec = res/modules/eicar.bat
[module 8]
name = JavaTest
exec = java -jar res/modules/javatest.jar
[module 8]
name = DriveByDownload
exec = java -jar res/modules/DriveByDownload.jar
[module 9]
name = NMAP
exec = /usr/bin/nmap
[module 10]
name = WinPcap
exec = res/modules/installWinPCap.bat
[module 11]
name = EmailEicar
exec = java -jar res/modules/EmailEicarModule.jar
[module 12]
name = EmailBatch
exec = java -jar res/modules/EmailBatchModule.jar
[module 13]
name = WriteEicar
exec = res/modules/WriteEicar.bat

The emboldened line had been modified to enumerate the directory where the

nmap binary is located on a Debian system, Debian being the distribution from which

Ubuntu is derived. This was the only line that needed to be changed, as NMAP was the

program used by the scenario to be exploited in this project. Again, this modification

would not be necessary if using MS Windows machines.

 58

3. Running the VM Guests

Running MAST on the guests was a relatively simple process. Though order was

not critical, for several reasons it was best to run the services beginning with the SG,

followed by the SE, and finally the EN. Below are the specific commands to launch the

MAST service on each system. Please note that changing directory to the respective jar

file was necessary since the MAST program used files in the present working directory,

where the configuration files detailed above were expected to be found. Note that the IP

of the SG was 192.168.56.105 and the IP of the SE was 192.168.56.106 and finally the IP

of the EN was 192.168.56.102.

a. Running the SG

The SG is the top node of the network tree and therefore does not need an IP

address of a server to start the program.
cd /home/$USER/share/SG/
java -jar SG_347.jar

b. Running the SE

Since the SE needs to communicate with the SG for updated scenarios and also to

allow for the SG to start or stop scenarios the IP address of the SG must be provided to

the SE at start time, along with the port number by which to establish the connection.
cd /home/$USER/share/SE/
java -jar SE_347.jar 192.168.56.105 30001

c. Running an EN

The EN is provided the IP address and port of the SE from which it will receive

commands during the execution of a MAST scenario.
cd /home/$USER/share/EN/
java -jar EN_347.jar 192.168.56.106 30000

B. EXPLOITATION

The attempt of the exploit is to stress the host system and consume resources on

the host network. Ultimately the exploit is showing a proof of concept that MAST is

vulnerable to attacks. The attack took place between the SE and one EN. A graphical

representation of the network is depicted in Figure 11.

 59

Figure 11. MAST Sample Network

1. “The Angle”

While there are many theoretical exploit ‘vectors,’ only one is needed to

demonstrate the vulnerability in MAST. It is also important to note that different attack

vectors have varying levels of practicality. For example, data sent in a TCP stream

between two Java instances is theoretically trivial to modify ‘in flight’; however, the

method by which Java bundles the data in the TCP stream makes the arbitrary

modification of the data impractical. Specifically, the length of a string must be the same

and cannot contain spaces or certain special characters or Java will drop the packet.

Further in the chapter a packet is modified “in flight” to change the content while still

maintaining the proper length.

While it is possible to programmatically modify Java TCP streams, the

demonstrated attack instead leveraged the versatility, and therefore rich selection of

command line arguments, of NMAP to edit strings in flight without changing their

length. In this way, it was possible to demonstrate vulnerability without implementing a

 60

needlessly reusable and versatile exploit. Analogous to the mathematics arena, all that

was necessary to disprove a statement such as

“Communication between MAST modules is [always] secure”

was to simply demonstrate a single counter example in the form of

“There exists a case in which communication between MAST modules is not

secure.”

2. Reconnaissance and “Preparing the Battle-Space”

Some sort of traffic sniffing was necessary to view the traffic between the MAST

modules. Though tcpdump could be used on either side, this would have been an

unrealistic circumstance in practice. Thus, a tool and method was needed to perform

some sort of Man-in-the-Middle (MitM) attack.

There were many tools and options from which to choose to perform a MitM

attack, but ettercap and ARP Poisoning were chosen for simplicity and flexibility. As with

any MitM attack, the goal was to redirect all traffic between two or more hosts through

the attacker’s machine first, giving the attacker the ability to view and potentially modify

that traffic. The ARP Poisoning attack accomplished this by poisoning the ARP tables on

the victim hosts. Specifically, it aimed to replace the MAC address associated with the IP

address of each victim with the MAC address of the attacker. Thus, all traffic bound for

the victim machines, at the link layer, went to the attacker instead. The attacker then

could drop, forward, or modify and forward all traffic between the victim hosts. Figure

12 depicts the correct and intended flow of information prior to the ARP Poisoning MitM

attack.

 61

Figure 12. Correct Network Communication

To execute the attack, Mallory (the hypervisor) sent a “gratuitous” (unsolicited)

ARP reply to the SE with the IP address of 192.168.56.102 and the MAC address of

0a:00:27:00:00:00. Even though this reply was unsolicited, it was accepted nonetheless due

to the insecure design of the protocol. Though this attack would not have worked in an

IPv6 environment, there were other MitM attacks available for those circumstances.

Next, Mallory sent an ARP reply to the EN with the IP address of 192.168.56.106 and the

MAC address of 0a:00:27:00:00:00. The result was that any traffic between the EN and the

SE would be sent through Mallory. The resultant network is shown in Figure 13.

 62

Figure 13. Compromised Network Communication

The command to execute the ARP MitM was:
sudo ettercap -T -q -M ARP:remote /192.168.56.106// /192.168.56.102//

Once traffic was flowing through Mallory, analysis of the traffic itself was

possible by using Wireshark on the vboxnet0 network. At this point, it was clear that the

data between the modules was transmitted in plain text. After sifting through several

conversations between the SE and the EN, and realizing that the most vulnerable module

to attack was one using NMAP, it was decided to focus on the NMAP conversations.

Using the Wireshark filter ip.src == 192.168.56.106 and ip.dst == 192.168.56.102 and tcp

contains “NMAP,” all irrelevant conversation was ignored. First, the MAST services were

started, and then once the normal exchange of traffic had ceased, a capture was

commenced. In the window of the SE, the command start was issued. As discussed

earlier, the default module to run was NMAP. The expectation was that some packet

would initiate at the SE and travel to the EN with the NMAP module indicated and

appropriate command line options. The resultant packet can be seen in Figure 14.

 63

Figure 14. Communication between SE and EN

Highlighted in green are the relevant strings for the desired attack. When

compared to ScanSingleHost.txt, it is easy to pick out the elements of the command in the

packet.

Once the traffic format was identified, it needed only to be replaced by some

other malicious text. Ettercap had this capability, forgoing the need to find a supporting

application. Ettercap provided for the use of what it called “filters.” These filters

performed arbitrary tasks on each packet passing through ettercap before it was

forwarded. In this case, the task was somewhat simple: identify packets with the string

NMAP, and in such cases, replace instances of --unprivileged and 127.0.0.1 with new

arguments demonstrating the weakness of the communications method used by MAST.

Writing a filter for ettercap was similar to writing a program in a general purpose

scripting language like Python or Perl. Below is the source code used to create the filter

for this project, which was named hack.filter:
1 if (ip.proto == TCP) {
2 if (search(DATA.data, “NMAP”)) {
3 replace(“127.0.0.1,” “192.*.*.*”);
4 replace(“--unprivileged,” “--packet-trace”);
5 msg(“Got’em!\n”);
6 }
7 }

 64

Line (2) searched for any TCP segment that contained ASCII text containing

NMAP. Any other packet was simply forwarded. Should it find NMAP, line (3) would

replace any instance of 127.0.0.1 with 192.*.*.* and line (4) would replace any instance of --

unprivileged with --packet-trace. While not necessary for the attack, line (5) notified the

attacker whenever such actions were executed in order to provide visibility into the

action.

The specific goal of this script was to change the console/terminal command:
$ nmap --unprivileged 127.0.0.1

to
$ nmap --packet-trace 192.*.*.*

The former conducted a simple port scan of the EN (the node which received the

command). This was an innocuous port scan that would only be visible to or affect the

EN itself. The latter command would perform a verbose port scan of the entire 192.0.0.0/8

network!

3. Execution and Results

Once the ettercap filter was written, it was compiled into a binary filter file using

the following command:
etterfilter hack.filter -o hack.ef

Upon compilation, the filter could be used in conjunction with any other ettercap

MitM attack. In this case, it was combined with the same ARP MitM attacked described

above. The resultant command was:
sudo ettercap -T -q -F hack.ef -M ARP /192.168.56.106// /192.168.56.102//

The next step was to ensure all of the VMs were running and that Wireshark was

capturing traffic across vboxnet0. After issuing the command start in the SE, and applying

the same Wireshark filter from above, two packets were visible. The first packet was the

original (and correct NMAP) command packet sent by the SE, destined for the EN – but

stopped for processing by Mallory. The second packet was the modified version sent to

the EN by Mallory. Note that the original packet was not received by the intended EN.

Figure 15 highlights the relevant data in the outbound packet.

 65

Figure 15. Compromised Packet

Upon receipt, and without having any indication that the instruction was

malicious, the EN began an intensive scan of the 192.0.0.0/8 network. The EN’s use of

system resources spiked significantly as it struggled to process the vast scan.

The selection of 192.0.0.0/8 was specific to the testing environment but could easily

be tailored to more specific (or broader) needs. Furthermore, this attack could easily be

extended to conduct this attack on all ENs on a given broadcast domain. Depending on

the network, ettercap is also capable of attacking any or all hosts on a given subnet!

Clearly, this attack demonstrates a severe vulnerability with the current implementation.

The previous exploitation was an attack against communication in the clear and

demonstrates a vulnerability of MAST without encrypted communication. The SVN 347

version of MAST could not be tested for vulnerabilities with regard to file transferring

between the SG and the SE because at the time of cloning the SVN 347 version that

functionality did not exist. The lack of this feature did not allow for testing and therefore

had to be added with the proposed solution. The proposed solution addressed digitally

signing files that were transferred between the SG and SE.

C. PROPOSED SOLUTION TESTING

The implementation of the proposed solution is provided in the Appendix. The

initial setup of the improved MAST is the same as the SVN 347 version and thus will not

be covered again. The connections between the SG, SE, and EN are all secured by an

 66

SSL connection and therefore encrypted and secure between all nodes of the MAST

architecture. The same tests are conducted against the proposed solution as well as

additional testing for the file transfer and digital signing of the files that are transferred.

1. Re-attacking Communication

As referenced before, the communication between the SE and EN is vulnerable to

a MitM attack. With the inclusion of SSL for the communication between the SE and

EN, the MitM attack should be removed from the list of vulnerabilities. This is

demonstrated in conducting the same MitM attack as before and finding different results.

In Figure 16 the packet capture is shown for the MitM attack for the SE and EN however

now the connection is using SSL and thus the packet data is represented as unintelligible

ASCII non-printing characters, represented by the printable ASCII character 0x2E (a

period: “.”).

Figure 16. SSL Packet Capture

Not only is the data of each packet sent between the components of MAST

encrypted, but the use of SSL is also hidden from Mallory as seen in Figure 17. The

packets are only seen as being sent using the TCP protocol and not one of the SSL

protocols.

 67

Figure 17. SSL Encapsulated in TCP Session

2. Attacking File Transfer

MAST had no file transfer functionality in SVN 347; this functionality is added

with the addition of the proposed solution. The SG now accesses a scenario from the SG

scenario folder and sends it along with the signature to the SE. The SE verifies the files

as described in Chapter II. The successful transfer of a file is depicted in the SG output,

in Figure 18, for sending the file while the SE output, in Figure 19, is the reception and

successful verification and validation of the file.

Figure 18. SG File Upload

Figure 19. SE File Check and Accept

 68

Exploitation of the file transfer via a MitM attack is no longer possible due to the

proposed solution’s utilization of SSL, as discussed before. However, if an insider

manipulates a scenario on the SG and sends it to the SE, the SE needs to detect and

appropriately respond to the file. In the proposed solution, the method by which it

detects the unauthorized modification of the file is through the digital signature. Figure

20 shows how the SE will display to the user that the file does not verify with its

signature.

Figure 20. File Fails to Verify with Signature

D. SUMMARY

While testing has not been all-inclusive for the issues addressed in Chapter III, it

shows that there were vulnerabilities in MAST that could cause real world problems.

The ability for an attacker to manipulate commands between the SG, SE and EN in such

a manner could have far-reaching and devastating effects. If the file transfer had existed

but the communication was unsecure or the file was not verified before use, an arbitrary

scenario could have been uploaded to an SE.

The proposed solution addressed these issues with the addition of SSL and the

digital signature of file transfers. This solution is not a panacea for the vulnerabilities

that are in MAST but this testing shows that the proposed solution provides several

much-needed layers of security. The demonstrated attacks were no longer successful

after the utilization of SSL and digital signatures.

 69

V. CONCLUSION AND FUTURE WORK

This chapter presents a conclusion of findings of the proposed solution as well as

identifies areas of future work for MAST.

A. CONCLUSION OF FINDINGS

MAST provides an important tool for training and evaluating network

administrators, as well as users, of the Navy and more importantly the DOD in general.

A significant hurdle to MAST’s adoption by the DOD community is expected to be the

certification and accreditation issues raised in [1]. MAST has been incrementally

developed by many students at NPS over the last few years. While the current

implementation of MAST demonstrates the value of its approach, from a software

engineering perspective it lacks in the rigor and structure of commercial products. To be

deployment ready, MAST should be re-implemented with proper software methodologies

and Object Oriented Programming (OOP) practices, keeping in mind the C&A issues as

identified in [1]. As discussed in Chapter III, the current implementation of MAST could

prevent future developers from improving upon MAST without inescapably rewriting

substantial portions of the core code.

This thesis corrects seven key issues with MAST and addresses numerous issues

related to the implementation, which can be seen in the Appendix. The proposed

solutions follow OOP best practices when possible, deviating therefrom only when the

current architecture and implementation made it impossible. The issues addressed are

key to the progression of MAST through another round of DOD RMF, implementing

vital layers of security. The solution presented herein has implemented encrypted

communications between all components of MAST, to include communication between

the SGs and SEs as well as the SEs and ENs; digitally signed file transfers between the

SGs and SEs. This work has significantly hardened MAST with respect to security by

ensuring it uses strong encryption, at least one-directional authentication, and limited

guarantees of data integrity; thus it enhances MAST’s confidentiality, integrity,

availability, as well as authentication and non-repudiation capabilities.

 70

B. FUTURE WORKS

While reviewing nearly all of MAST’s source code and architecture, multiple

areas of future work were found. These areas include: continued work on vulnerabilities

addressed in [1] and a complete rebuild of MAST using OOP best practices.

1. Vulnerabilities from DOD RMF

This thesis addressed seven of the 77 vulnerabilities found in [1]. While most of

the remaining vulnerabilities lie within the development of MAST, there are still

vulnerabilities to be addressed from deployment through documentation of MAST. All

of the remaining vulnerabilities should be addressed before MAST is subjected to another

DOD RMF. A cursory review of the remaining vulnerabilities shows eight outstanding

“High” threats to MAST in the development portion of the DOD RMF, yet solutions

could be as easy as assessing the feasibility of such vulnerabilities. Impractical exploits

which aim to take advantage of theoretical vulnerabilities pose less of a threat than those

with are practical to exploit, perhaps even no threat at all.

2. MAST Rebuild Using OOP

The purpose and general design of MAST are well thought-out; however, as with

many research projects that involve students developing the system over a number of

years, MAST did not follow a product grade software engineering discipline. For many

reasons, completely re-implementing MAST’s functionality would be both safer and

easier than attempting to rectify the noted deficiencies in [1]. Most, if not all, from our

perspective, concepts of OOP have not been fully enforced in MAST’s development; this

lends itself to significant complications when trying to improve upon MAST and when

formally analyzing it.

To be deployment ready on DOD networks, MAST should be developed by

experienced software and product engineers using appropriate software methodologies.

The key stakeholders should be identified and involved from the outset with clearly

identified requirements and documentation maintained to the greatest degree possible to

facilitate future development. Such action would address many, if not most, of the issues

 71

remaining to be addressed from [1]. Once a coherent architecture is formalized, any

number of software development methodologies, such as waterfall or agile, and OOP

practices should be able to generate a robust, functional, and extensible system with the

potential to become a game-changer for cyber security training and readiness.

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

APPENDIX. PROPOSED SOLUTION

The proposed solutions to the security issues addressed by this thesis are included

in this appendix. These do not represent all of the source code of MAST just the portions

that were edited or added to the program to achieve the hardening of MAST.

A. DIGITALLY SIGNED FILE TRANSFER

Uploading the file and the signature via a ServerCommand function is added to

the ServerCommand class of the SG package also a new class is added to the common

package; this class is called SignedFile. SignedFile contains the file name, the file

content, and the signature of the file. This allows for MAST to transfer a file and the

associated signature from the SG to the SE.

public class SignedFile {

 private File file;

 private byte[] content;

 private byte[] signature;

 public SignedFile(File file, byte[] content, byte[] signature) {

 this.file = file;

 this.content = content;

 this.signature = signature;

 }

 public File getFile() {

 return file;

 }

 public byte[] getContent() {

 74

 return content;

 }

 public byte[] getSignature() {

 return signature;

 }

}

public class ServerCommand extends Command {

 private static final String SCENARIO_PATH = "SG_scenario";

 private static final String SIGNATURE_PATH = "ScenarioSign";

 private static final String SIGNATURE_EXT = ".sig";

 private SignedFile signedFile;

 private int intPayload;

 public ServerCommand(String name) {

 super(name);

 intPayload = 0;

 }

 public ServerCommand(String name, int intPayload) {

 super(name);

 this.intPayload = intPayload;

 }

 75

public ServerCommand(String name, String fileName) {

 super(name);

 String filePath = SCENARIO_PATH + File.separator + fileName;

 String signPath = SIGNATURE_PATH + File.separator +

fileName + SIGNATURE_EXT;

 File scenarioFile = new File(filePath);

 FileInputStream fileInputStream = null;

 byte[] content = new byte[(int) scenarioFile.length()];

 byte[] signature = new byte[384];

 FileInputStream sigInputStream = null;

 try {

 fileInputStream = new FileInputStream(scenarioFile);

 for (int i = 0; i < content.length; i++) {

 content[i] = (byte) fileInputStream.read();

 }

 fileInputStream.close();

 sigInputStream = new FileInputStream(signPath);

 for (int i = 0; i < signature.length; i++) {

 signature[i] = (byte) sigInputStream.read();

 }

 sigInputStream.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 76

 this.signedFile = new SignedFile(scenarioFile, content, signature);

 }

The SE must determine that the client packet contains a file that has to be verified

and determine if the file can be written to disk or not based on the verification. This is

achieved in the ServerCommunicator of the SE by checking the name of the client

packet.

public class ServerCommunicator implements Runnable {

 private Logger myLogger;

 private final static int RETRY_TIMES = 2;

 private final static int RETRY_DELAY = 15000;

 private final static int LOOP_DELAY = 1000;

 private final static String PUBLIC_KEY = "PubKeys"

+ File.separator + "public.key";

 private static final String SCENARIO_PATH = "scenario" +

File.separator;

 private Model model;

 private ScenarioEngine scenarioEngine;

 private boolean running;

 private SEServer seServer;

 private Connection connection;

else if ("UPLOAD".equalsIgnoreCase(clientPacket.getName())) {

 System.out.println("New Scenario recieved...");

 SignedFile signedFile = ((SignedFile) clientPacket.getPayload());

 FileInputStream keyfis = new FileInputStream(PUBLIC_KEY);

 77

 byte[] encKey = new byte[keyfis.available()];

 keyfis.read(encKey);

 keyfis.close();

 X509EncodedKeySpec pubKeySpec = new

X509EncodedKeySpec(encKey);

 KeyFactory keyFactory = null;

 try {

 keyFactory = KeyFactory.getInstance("EC");

} catch (NoSuchAlgorithmException e) {

 System.out.println("Inside Key Factory for Server Communicator: No

Such Algorithm Exception has been Thrown");

 }

PublicKey pubKey = keyFactory.generatePublic(pubKeySpec);

byte[] sentSignature = signedFile.getSignature();

Signature sig = Signature.getInstance("SHA512withECDSA");

sig.initVerify(pubKey);

sig.update(signedFile.getContent());

boolean verify = sig.verify(sentSignature);

if (verify) {

System.out.println("signature verifies: " + verify);

File scenarioFile = signedFile.getFile();

String uploadedScenario = SCENARIO_PATH

scenarioFile.getName().toString();

 78

FileOutputStream output = new FileOutputStream(uploadedScenario);

output.write(signedFile.getContent());

output.close();

System.out.println("Scenario was created now to validate format!");

ScenarioParser scenarioParser = new ScenarioParser(uploadedScenario);

File scenarioSEFile = new File (uploadedScenario);

Scenario scenario = new Scenario(scenarioSEFile);

 scenarioParser.parseScenario(scenario);

System.out.println("Scenario was in a valid format!");

} else {

System.out.println("signature verifies: " + verify);

System.out.println("The Scenario file did not check correct. The signature was

not verified to be correct!");

disconnectFromServer();

 }

 }

B. SECURE SOCKET LAYER COMMUNICATION

Any time MAST communicates as a server it uses the SpawnCommunicator class

in the Common package. SpawnCommunicator now uses SSL to create a socket for the

communication and then once the socket is created it is then hardened to remove potential

vulnerabilities. The hardening of the socket removes protocols that have known

vulnverabilities.

public class SpawnCommunicator<T extends Communicator> implements

Runnable {

 79

private final static String[] PROHIBITED_PROTOS = {

"SSLv2Hello", "SSLv3", "TLSv1.1"};

 private final static String[] PROHIBITED_SUITE_COMPONENTS

 = { "anon", "DSA", "RC4", "MD5","DES", "NULL"};

 private final static boolean EXACT = true;

 private int listenPort;

 private int maxClients;

 private SSLServerSocket sslServerSocket;

 private boolean isListening;

 private ExecutorService pool;

 private Model model;

 private Executable server;

 private Class<T> classTemplate;

 public SpawnCommunicator(int listenPort, int maxClients, Model model,

Executable server, Class<T> classTemplate) {

 this.listenPort = listenPort;

 this.maxClients = maxClients;

 this.model = model;

 this.server = server;

 this.classTemplate = classTemplate;

 this.pool = Executors.newCachedThreadPool();

 this.isListening = true;

 80

}

public void run() {

try {

SSLServerSocketFactory sslServerSocketFactory = (SSLServerSocketFactory)

SSLServerSocketFactory.getDefault();

sslServerSocket = (SSLServerSocket)

sslServerSocketFactory.createServerSocket(listenPort, maxClients);

hardenSSLServerSocket(sslServerSocket);

while (this.isListening) {

SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();

Constructor<T> constructor =

classTemplate.getDeclaredConstructor(SSLSocket.class, Model.class);

Communicator communicator = constructor.newInstance(sslSocket, model);

pool.submit(communicator);

 }

} catch (SocketException e) {

 e.printStackTrace();

 shutdown(0);

} catch (IOException e) {

 e.printStackTrace();

 shutdown(0);

} catch (SecurityException e) {

 shutdown(0);

 81

} catch (IllegalAccessException e) {

 e.printStackTrace();

 shutdown(0);

} catch (IllegalArgumentException e) {

 e.printStackTrace();

 shutdown(0);

} catch (InvocationTargetException | NoSuchMethodException |

InstantiationException e) {

 e.printStackTrace();

 shutdown(0);

 }

}

public void shutdown(int runLevel) {

 isListening = false;

 try {

 sslServerSocket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 pool.shutdown();

 server.shutdown(runLevel + 1);

 }

 82

 private void hardenSSLServerSocket(SSLServerSocket sslServerSocket)

{

String[] defaultProtos = sslServerSocket.getSupportedProtocols();

String[] allowedProtos = removeInstancesOf(defaultProtos,

PROHIBITED_PROTOS, EXACT);

sslServerSocket.setEnabledProtocols(allowedProtos);

String[] defaultSuites = sslServerSocket.getSupportedCipherSuites();

String[] allowedSuites = removeInstancesOf(defaultSuites,

PROHIBITED_SUITE_COMPONENTS, !EXACT);

sslServerSocket.setEnabledCipherSuites(allowedSuites);

 }

private String[] removeInstancesOf(String[] originals, String[] prohibited_items,

 boolean exactness) {

 ArrayList<String> resultsList = new ArrayList<String>();

 for (String original : originals) {

 boolean prohibited = false;

 for (String prohibited_item : prohibited_items) {

 if ((exactness != EXACT && original.contains(prohibited_item))

 || (exactness == EXACT &&

original.equals(prohibited_item))) {

 prohibited = true;

 break;

 }

}

 if (!prohibited) {

 83

 resultsList.add(original);

 }

}

 return resultsList.toArray(new String[resultsList.size()]);

 }

}

MAST also needs to communicate as a client and thus uses the

ConnectionToServer class in the common package. SSL has been added to the class so

that any time there is a client communicating with a server it will use SSL.

public class ConnectionToServer {

 private final static int SOCKET_TIMEOUT = 1000;

 private Connection connection;

 private boolean isConnected;

 public ConnectionToServer(Connection connection) {

 this.connection = connection;

 this.isConnected = false;

 initConnection();

 }

 private void initConnection() {

 int retryCount = 0;

 while (retryCount < connection.getRetryTimes()) {

 try {

 SSLSocketFactory sslSocketFactory =

(SSLSocketFactory) SSLSocketFactory.getDefault();

 84

 SSLSocket sslSocket = (SSLSocket)

sslSocketFactory.createSocket();

 sslSocket.bind(null);

 InetSocketAddress inetSocketAddress = new

InetSocketAddress(connection.getServerAddress().getHostAddress(),connection.getServe

rPort());

 sslSocket.connect(inetSocketAddress,

SOCKET_TIMEOUT);

 connection.setSSLSocket(sslSocket);

 connection.setOut(new

ObjectOutputStream(connection.getSSLSocket().getOutputStream()));

 connection.setIn(new

ObjectInputStream(connection.getSSLSocket().getInputStream()));

 connection.setLocalAddress((Inet4Address)

connection.getSSLSocket().getLocalAddress());

 NetworkInterface networkInterface =

NetworkInterface.getByInetAddress(connection.getLocalAddress());

 networkInterface.getInterfaceAddresses().indexOf(connection.getLocalAddress())

;

 for (InterfaceAddress ifaceAddr :

networkInterface.getInterfaceAddresses()) {

If (ifaceAddr.getAddress().equals(connection.getLocalAddress())) {

 String prefix = String.valueOf((ifaceAddr.getNetworkPrefixLength() != 0)

? ifaceAddr.getNetworkPrefixLength() : 8);

 String CIDRAddress = connection.getLocalAddress().getHostAddress() +

"/"+ prefix;

 System.out.println("ConnectionToServer: CIDR address: " + CIDRAddress

 85

 + ", Network

Address: " + connection.getNetworkAddress());

SubnetUtils utils = new SubnetUtils(CIDRAddress);

SubnetInfo info = utils.getInfo();

 connection.setNetworkAddress(info.getNetworkAddress());

 }

 }

 isConnected = true;

 return;

 } catch (UnknownHostException e) {

 connection.getLogger().log(Level.WARNING,"Can't find " +

connection.getServerAddress());

 try {

 Thread.sleep(connection.getRetryDelay());

 } catch (InterruptedException e1) {

 connection.getLogger().log(Level.WARNING,

e1.getStackTrace().toString());

 }

 retryCount++;

 } catch (IOException e) {

 connection.getLogger().log(Level.WARNING,"Couldn't get I/O for " +

connection.getServerAddress());

 try {

 Thread.sleep(connection.getRetryDelay());

 } catch (InterruptedException e1) {

 86

connection.getLogger().log(Level.WARNING, e1.getStackTrace().toString());

 }

 retryCount++;

 }

 }

 connection.getLogger().log(Level.WARNING,

 "Tried " + connection.getRetryTimes() + " times, giving up");

 isConnected = false;

 return;

 }

 public boolean isConnected() {

 return isConnected;

 }

}

 87

LIST OF REFERENCES

[1] B. J. Diana, “Malicious Activity Simulation Tool (MAST) and trust,” M.S. thesis,
CS, NPS, Monterey, CA, 2015.

[2] C. Pfleeger, S. Pfleeger and J. Margulies, Security in Computing. Westford, MA:
Prentice Hall, 2015.

[3] T. Kohno, N. Ferguson and B. Schneier, Cryptography Engineering. Indianapolis,
IN: Wiley Pub., Inc., 2010.

[4] S. Singh, The Code Cook. New York: Doubleday, 1999.

[5] Data Encryption Standard, FIPS 46–3, Oct. 1999.

[6] E. Biham and A. Shamir “Differential Cryptanalysis of DES-like cryptosystems”
Dept. of Appl. Math., The Weizmann Institute of Science, July 19, 1990.

[7] Advanced Encryption Standard, FIPS 197, Nov. 2001

[8] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE Standard 802.11, 1999.

[9] The AES-CBC cipher algorithm and its use with IPsec, RFC 3602, Sep. 2003.

[10] Rivest, R. L., A. Shamir and L. M. Adleman, A Method for Obtaining Digital
Signatures and Public Key Cryptosystems, Communications of the ACM, Volume
21, Number 2, February 1978, (pp. 120–126).

[11] Introduction to higher mathematics. (n.d.). P. Keef and D. Guichard. [Online].
Available: http://www.whitman.edu/mathematics/higher_math_online/
section03.08.html. Accessed on Mar. 24, 2015.

[12] Secure hashing. (2015, August 6). NIST. [Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

[13] Privacy Enhancement for Internet Electronic Mail, RFC 1422, Feb. 1993

[14] Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List Profile, RFC 3280, Apr. 2002.

[15] Java Security Overview. (n.d). [Online]. Available:
http://docs.oracle.com/javase/7/docs/technotes/guides/security/overview/jsovervie
w.html. Accessed on Mar. 24, 2015.

http://docs.oracle.com/javase/7/docs/technotes/guides/security/overview/jsoverview.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/overview/jsoverview.html

 88

[16] List all provider and its algorithm. (n.d.). [Online]. Available:
http://www.java2s.com/Code/Java/Security/ListAllProviderAndItsAlgorithms.ht
m. Accessed on Mar. 24, 2015.

[17] Security Requirements for Cryptographic Modules, FIPS 140–2, May 2001.

[18] The Transport Layer Security (TLS) Protocol Version 1.2, RFC 5246, Aug. 2008.

[19] Secure Socket Layer (SSL) Protocol Version 3.0, RFC 6101, Aug. 2011.

[20] The TLS Protocol, RFC 2246, Jan. 1999.

[21] The Transport Layer Protocol (TLS) Version 1.1, RFC 4346, Apr. 2006 .

[22] Guidelines for the Selection , Configuration, and Use of Transport Layer Security
(TLS) Implementations, NIST SP 800–52rl, Apr. 2014.

[23] H. Johnson, “Web Security” in Network Security, Blekinge Institute of
Technology, Sweden, 2012.

[24] Prohibiting RC4 Cipher Suites, RFC 7465, Feb. 2015.

[25] Addition of ARIA Cipher Suites to Transport Layer Security (TLS), RFC 6209,
Apr. 2001.

[26] Addition of Camellia Cipher Suites to Transport Layer Security (TLS), RFC
6367, Sep. 2011.

[27] D. Adrian et al., “Imperfect Forward Secrecy: How Diffie-Hellman Fails in
Practice,” WeakDH.org [Online]. Available: https://weakdh.org/imperfect-
forward-secrecy.pdf Accessed: Jun. 24, 2015.

[28] M. Vanhoef and F. Pissans, “All Your Biases Belong To Us,” in USINEX 2015 ©
USINEX 2015.

 89

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. Thesis objective
	B. methodology
	C. thesis overview

	II. Background
	A. CONFIDENTIALITY
	1. Symmetric Encryption
	(1) Mono-Alphabetic Substitution
	(2) Poly-Alphabetic Substitution
	(3) Transposition
	(4) Block Cypher
	a. Triple Data Encryption Standard (3DES)
	b. Advanced Encryption Standard (AES)
	(1) Block Ciphering Modes

	2. Asymmetric Encryption

	B. INTEGRITY
	1. Threats to Integrity
	2. Protection of Integrity
	a. Parity Check
	b. Hash Function

	C. AVAILABILITY
	D. AUTHENTICATION and Non-repudiation
	1. Message Authentication Code
	2. Digital Signatures
	(1) Version
	(2) Serial Number
	(3) Algorithm ID
	(4) Issuer
	(5) Validity
	(6) Subject
	(7) Subject Public Key Information
	(8) Unique Identifiers
	(9) Extensions

	E. Summary

	III. proposed solution
	A. Security Issues of MAST
	B. Digital Signatures
	1. Digital Signatures
	a. Key Generation
	b. Using Signatures
	c. Verifying Signatures

	2. DOD RMF Vulnerabilities Addressed through Digital Signatures

	C. Secure Socket Layer / Transport Layer Security
	1. SSL/TLS Technical Components
	a. TLS Handshake
	(1) The Handshake (Hello)
	(2) Change Cipher Spec
	(3) Alerts

	b. Putting it All Together
	c. Shared Secret Negotiation
	(1) Confidentiality
	(2) Integrity
	(3) Authentication
	(4) Anti-Replay
	(5) Key Management

	2. Creating a SSL Socket
	3. Using a SSL Socket
	4. DOD RMF Vulnerabilities Addressed through SSL

	D. Summary

	IV. Testing
	A. Environment Preparation
	1. The Virtual Environment
	2. Configuration
	a. The Host/Hypervisor
	b. The Guests

	3. Running the VM Guests
	a. Running the SG
	b. Running the SE
	c. Running an EN

	B. Exploitation
	1. “The Angle”
	2. Reconnaissance and “Preparing the Battle-Space”
	3. Execution and Results

	C. Proposed Solution testing
	1. Re-attacking Communication
	2. Attacking File Transfer

	D. Summary

	V. Conclusion and future work
	A. Conclusion of findings
	B. Future Works
	1. Vulnerabilities from DOD RMF
	2. MAST Rebuild Using OOP

	appendix. Proposed Solution
	A. Digitally Signed File Transfer
	B. Secure Socket Layer Communication

	List of References
	initial distribution list

